48 resultados para algebraic cryptanalysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
In this paper we provide a complete algebraic invariant of link-homotopy, that is, an algebraic invariant that distinguishes two links if and only if they are link-homotopic. The paper establishes a connection between the ""peripheral structures"" approach to link-homotopy taken by Milnor, Levine and others, and the string link action approach taken by Habegger and Lin. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study the category of algebraic Bol loops over an algebraically closed field of definition. On the one hand, we apply techniques from the theory of algebraic groups in order to prove structural theorems for this category. On the other hand, we present some examples showing that these loops lack some nice properties of algebraic groups; for example, we construct local algebraic Bol loops which are not birationally equivalent to global algebraic loops.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics
Resumo:
In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear H(infinity) approaches. Two nonlinear H(infinity) controllers that guarantee induced L(2)-norm, between input (disturbances) and output signals, bounded by an attenuation level gamma, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.