28 resultados para Star Lindelof spaces
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Resumo:
Whenever P is a topological property, we say that a topological space is star P if whenever U is an open cover of X, there is a subspace A subset of X with property P such that X = St(A, U). We study the relationships of star P properties for P is an element of {Lindelof, sigma-compact, countable} with other Lindelof type properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report the discovery of the first known symbiotic star in IC10, a starburst galaxy belonging to the Local Group, at a distance of similar to 750 kpc. The symbiotic star was identified during a survey of emission-line objects. It shines at V = 24.62 +/- 0.04, V - R(C) = 2.77 +/- 0.05 and R(C) - I(C) = 2.39 +/- 0.02, and suffers from E(B-V) = 0.85 +/- 0.05 reddening. The spectrum of the cool component well matches that of solar neighbourhood M8III giants. The observed emission lines belong to Balmer series, [S II], [N II] and [O III]. They suggest a low electronic density, negligible optical depth effects and 35 000 < T(eff) < 90 000 K for the ionizing source. The spectrum of the new symbiotic star in IC10 is an almost perfect copy of that of Hen 2-147, a well-known Galactic symbiotic star and Mira.
Resumo:
Teutsch 145 and Teutsch 146 are shown to be open clusters (OCs) orbiting well inside the solar circle, a region where several dynamical processes combine to disrupt most OCs on a time-scale of a few 108 yr. BVI photometry from the GALILEO telescope is used to investigate the nature and derive the fundamental and structural parameters of the optically faint and poorly known OCs Teutsch 145 and 146. These parameters are computed by means of field-star-decontaminated colour-magnitude diagrams and stellar radial density profiles (RDPs). Cluster mass estimates are made based on the intrinsic mass functions (MFs). We derive the ages 200+100(-50) and 400 +/- 100 Myr, and the distances from the Sun d(circle dot) = 2.7 +/- 0.3 and 3.8 +/- 0.2 kpc, respectively, for Teutsch 145 and 146. Their integrated apparent and absolute magnitudes are m(V) approximate to 12.4 and 13.3 and M(V) approximate to -5.6 and -5.3. The MFs (detected for stars with m greater than or similar to 1 M(circle dot)) have slopes similar to Salpeter`s initial mass function. Extrapolated to the H-burning limit, the MFs would produce total stellar masses of similar to 1400 M(circle dot), typical of relatively massive OCs. Both OCs are located deep into the inner Galaxy and close to the Crux-Scutum arm. Since cluster-disruption processes are important, their primordial masses must have been higher than the present-day values. The conspicuous stellar density excess observed in the innermost bin of both RDPs might reflect the dynamical effects induced by a few 108 yr of external tidal stress.
Resumo:
We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.
Resumo:
In this work, considering the impact of a supernova remnant (SNR) with a neutral magnetized cloud we derived analytically a set of conditions that are favourable for driving gravitational instability in the cloud and thus star formation. Using these conditions, we have built diagrams of the SNR radius, R(SNR), versus the initial cloud density, n(c), that constrain a domain in the parameter space where star formation is allowed. This work is an extension to previous study performed without considering magnetic fields (Melioli et al. 2006, hereafter Paper I). The diagrams are also tested with fully three-dimensional MHD radiative cooling simulations involving a SNR and a self-gravitating cloud and we find that the numerical analysis is consistent with the results predicted by the diagrams. While the inclusion of a homogeneous magnetic field approximately perpendicular to the impact velocity of the SNR with an intensity similar to 1 mu G within the cloud results only a small shrinking of the star formation zone in the diagram relative to that without magnetic field, a larger magnetic field (similar to 10 mu G) causes a significant shrinking, as expected. Though derived from simple analytical considerations these diagrams provide a useful tool for identifying sites where star formation could be triggered by the impact of a supernova blast wave. Applications of them to a few regions of our own Galaxy (e.g. the large CO shell in the direction of Cassiopeia, and the Edge Cloud 2 in the direction of the Scorpious constellation) have revealed that star formation in those sites could have been triggered by shock waves from SNRs for specific values of the initial neutral cloud density and the SNR radius. Finally, we have evaluated the effective star formation efficiency for this sort of interaction and found that it is generally smaller than the observed values in our own Galaxy (SFE similar to 0.01-0.3). This result is consistent with previous work in the literature and also suggests that the mechanism presently investigated, though very powerful to drive structure formation, supersonic turbulence and eventually, local star formation, does not seem to be sufficient to drive global star formation in normal star-forming galaxies, not even when the magnetic field in the neutral clouds is neglected.
Resumo:
We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.
Resumo:
We present results on the system size dependence of high transverse momentum di-hadron correlations at root s(NN) = 200 GeV as measured by STAR at RHIC. Measurements in d + Au, Cu + Cu and Au + Au collisions reveal similar jet-like near-side correlation yields (correlations at small angular separation Delta phi similar to 0, Delta eta similar to 0) for all systems and centralities. Previous measurements have shown Chat the away-side (Delta phi similar to pi) yield is suppressed in heavy-ion collisions. We present measurements of the away-side Suppression as a function of transverse momentum and centrality in Cu + Cu and Au + Au collisions. The suppression is found to be similar in Cu + Cu and An + An collisions at a similar number of participants. The results are compared to theoretical calculations based on the patron quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will further constrain dynamic energy loss models and provide information about the dynamic density profile in heavy-ion collisions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we present the J/psi measurement in p+p collisions within the STAR collaboration Quarkonium program. This measurements aim to be the baseline measurement of a more comprehensive systematic study of quarkonium states production in order to understand their in medium modification. Here we report the total cross section and rho(T) distribution, and find them to be consistent with pQCD CEM predictions as well as to previous measurements at the same center-of-mass energy.
Resumo:
In this work the results of a spectroscopic study of the southern field narrow-line Be star HD 171054 are presented. High dispersion and signal-to-noise ratio spectra allowed the estimation of the fundamental photospheric parameters such as the projected rotational velocity, effective temperature and superficial gravity from non-LTE stellar atmosphere models. From these parameters and microturbulence, the abundances of He, C, N, O, Mg, Al and Si for this object are estimated. Results show that C is depleted whereas N is overabundant compared with the sun and OB stars in the solar vicinity. Oxygen and helium are close to the solar value. Magnesium is down by 0.43 dex and aluminium and silicon are overabundant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which is based on Weyl symmetrically ordered operator products. By using a polydifferential representation for the deformed coordinates, xj we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth-order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
Resumo:
The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.
Resumo:
In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.
Resumo:
Consider a continuous-time Markov process with transition rates matrix Q in the state space Lambda boolean OR {0}. In In the associated Fleming-Viot process N particles evolve independently in A with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Lambda is finite, we show that the empirical distribution of the particles at a fixed time converges as N -> infinity to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N -> infinity to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1/N.