92 resultados para SIMPLE-METAL NANOWIRES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.
Resumo:
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
First-principles density-functional theory studies have reported open structures based on the formation of double simple-cubic (DSC) arrangements for Ru(13), Rh(13), Os(13), and Ir(13), which can be considered an unexpected result as those elements crystallize in compact bulk structures such as the face-centered cubic and hexagonal close-packed lattices. In this work, we investigated with the projected augmented wave method the dependence of the lowest-energy structure on the local and semilocal exchange-correlation (xc) energy functionals employed in density-functional theory. We found that the local-density approximation (LDA) and generalized-gradient formulations with different treatment of the electronic inhomogeneities (PBE, PBEsol, and AM05) confirm the DSC configuration as the lowest-energy structure for the studied TM(13) clusters. A good agreement in the relative total energies are obtained even for structures with small energy differences, e. g., 0.10 eV. The employed xc functionals yield the same total magnetic moment for a given structure, i.e., the differences in the bond lengths do not affect the moments, which can be attributed to the atomic character of those clusters. Thus, at least for those systems, the differences among the LDA, PBE, PBEsol, and AM05 functionals are not large enough to yield qualitatively different results. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577999]
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
We describe a simple and efficient strategy to fabricate enzymatic devices based on the deposition of glucose oxidase on aligned and highly oriented CoNiMo metallic nanowires. CoNiMo nanowires with an average diameter of 200 nm and length of 50 mu m were electrodeposited on Au-covered alumina substrates via electrodeposition, using alumina membranes as templates. Enzyme-modified electrodes were fabricated via enzyme immobilization using a cross-linker. To minimize nonspecific reactions in the presence of interfering agents, a permselective membrane composed of poly(vinylsulfonic acid) and polyamidoamine dendrimer was deposited via electrostatic interaction. The formation of hydrogen peroxide as a product of the enzymatic reaction was monitored at low overpotential, 0.0 V (vs Ag/AgCl). The detection limit was estimated at 22 mu M under an applied potential of 0.0 V. The apparent Michaelis-Menten constant determined from the Lineweaver-Burke plot was 2 mM.
Resumo:
A simple and efficient procedure for the synthesis of beta-seleno and beta-thio amides via the ring-opening reaction of chiral 2-oxazolines in the presence of indium metal has been developed. Features of this method include the following: (i) easily and accessible starting materials; (ii) indium metal is more stable and less expensive then its respective salts; (iii) useful to excellent yields of beta-chalcogen amides derivatives. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. OBJECTIVES: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. MATERIAL AND METHODS: Seven groups were prepared with 12 specimens each (BIOLUX & BL, TRILUX & TR, BLUE DENT & BD, BIOCLER & BC, POSTARIS & PO, ORTHOSIT & OR, GNATHOSTAR & GN), opposed to metallic (M & nickel-chromium alloy), and to composite antagonists (C & Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. RESULTS: Regarding the antagonists, only OR (M = 10.45 ± 1.42 µm and C = 2.77 ± 0.69 µm) and BC (M = 6.70 ± 1.37 µm and C = 4.48 ± 0.80 µm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 µm and M = 1.78 ± 0.42 µm), followed by BL (C = 3.70 ± 1.32 µm and M = 3.70 ± 0.61 µm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 µm), and results similar to the best ones against composite (2.77 ± 0.69 µm). CONCLUSIONS: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis.
Resumo:
The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.
Resumo:
Prosthetic restorations that have been tried in the patient's mouth are potential sources of infection. In order to avoid cross-infection, protocols for infection control should be established in dental office and laboratory. This study evaluated the antimicrobial efficacy of disinfectants on full metal crowns contaminated with microorganisms. Full crowns cast in a Ni-Cr alloy were assigned to one control group (n=6) and 5 experimental groups (n=18). The crowns were placed in flat-bottom glass balloons and were autoclaved. A microbial suspension of each type of strain - S. aureus, P. aeruginosa, S. mutans, E. faecalis and C. albicans- was aseptically added to each experimental group, the crowns being allowed for contamination during 30 min. The contaminated specimens were placed into recipients with the chemical disinfectants (1% and 2% sodium hypochlorite and 2% glutaraldehyde) for 5, 10 and 15 min. Thereafter, the crowns were placed into tubes containing different broths and incubated at 35ºC. The control specimens were contaminated, immersed in distilled water for 20 min and cultured in Thioglycollate broth at 35ºC. Microbial growth assay was performed by qualitative visual examination after 48 h, 7 and 12 days. Microbial growth was noticed only in the control group. In the experimental groups, turbidity of the broths was not observed, regardless of the strains and immersion intervals, thus indicating absence of microbial growth. In conclusion, all chemical disinfectants were effective in preventing microbial growth onto full metal crowns.
Resumo:
The effect of S,S-ethylenediaminedisuccinic acid (edds) on the quenching of metal-catalyzed (metal = Mn, Fe, Co, Ni, Cu, Zn) oxidation of ascorbic acid was tested in vitro via oxidation of the fluorescent probe 1,2,3-dihydrorhodamine dihydrochloride. The pro-oxidant activity of iron was not fully suppressed, even at a four-fold molar excess of the ligand. The effect of serum on the toxicity to peripheral blood mononuclear cells (PBMC) and K562 cells was investigated. The cytotoxic effect of Fe-edds was abrogated in the presence of Trolox or serum proteins. The probable pathways of cell toxicity were investigated through blocking of the monocarboxylate transporters (MCT) in association with cell cycle studies by flow cytometry. Cells treated with metal complexes and alpha-cyano-4-hydroxycinnamic acid, a known MCT inhibitor, showed recovery of viability, suggesting that MCT proteins may be involved in the internalization of metal-edds complexes. The free acid induced cell cycle arrest in G0/G1 (PBMC) and S (K562) phases, suggesting direct DNA damage or interference in DNA replication.
Resumo:
Testing contexts have been shown to critically influence experimental results in psychophysical studies. One of these contexts that show important modulation of the behavioral effects of different stimulatory conditions is the separate (blocked) or mixed presentation of these stimulatory conditions. The study presents evidence that the apparent discriminabilities of two target stimuli can change according to which of these two testing contexts is used. A cross inside a ring and a vertical line inside a ring were presented as go stimuli in a go/no-go reaction time task. In one experiment, each of these stimuli was presented to a different group of volunteers and in another experiment they were presented to the same group of volunteers, randomly mixed in the blocks of trials. Similar reaction times were obtained for the two stimuli in the first experiment, and different reaction times (faster for the cross) in the second experiment. The latter result indicates that the two stimuli have different discriminabilities from the no-go stimulus; the cross having greater discriminability. This difference is however masked, presumably by the adoption of specific compensatory attentional sets, in a separate testing context.
Resumo:
This paper examines the role of parent rock, pedogenetic processes and airborne pollution in heavy metal accumulation in soils from a remote oceanic island, Fernando de Noronha, Brazil. We studied five soil profiles developed from different volcanic rocks. Mineralogical composition and total concentrations of major and trace elements were determined in 43 samples. The obtained concentrations range for heavy metals were: Co: 26-261 ppm; Cu: 35-97 ppm; Cr: 350-1446 ppm; Ni: 114-691 ppm; Zn: 101-374 ppm; Hg: 2-150 ppb. The composition of soils is strongly affected by the geochemical character of the parent rock. Pedogenesis appears to be responsible for the accumulation of Zn, Co, and, to a lesser extent, of Ni and Cu, in the upper, Mn- and organic carbon-enriched horizons of the soil profiles. Pedogenic influence may also explain the relationship observed between Cr and the Fe. Hg is likely to have been added to the soil profile by long-range atmospheric transport. Its accumulation in the topsoil was further favoured by the formation of stable complexes with organic matter. Clay minerals do not appear to play an important role in the fixation of heavy metals.
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.