36 resultados para POLYNOMIAL-MAPPINGS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).
Resumo:
In this paper we investigate the classification of mappings up to K-equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C(0) K-equivalence and bi-Lipschitz K-equivalence. We give an algebraic criterion for bi-Lipschitz K-triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings f, g : R(n) -> R(n), finitely determined with respect to K-equivalence are C(0)-K-equivalent if and only if they have the same degree in absolute value.
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
We investigate polynomial identities on an alternative loop algebra and group identities on its (Moufang) unit loop. An alternative loop ring always satisfies a polynomial identity, whereas whether or not a unit loop satisfies a group identity depends on factors such as characteristic and centrality of certain kinds of idempotents.
Resumo:
Let F be an algebraically closed field and let A and B be arbitrary finite dimensional simple algebras over F. We prove that A and B are isomorphic if and only if they satisfy the same identities.
Resumo:
For each ideal of multilinear mappings M we explicitly construct a corresponding ideal (a)M such that multilinear forms in (a)M are exactly those which can be approximated, in the uniform norm, by multilinear forms in M. This construction is then applied to finite type, compact, weakly compact and absolutely summing multilinear mappings. It is also proved that the correspondence M bar right arrow (a)M. IS Aron-Berner stability preserving.
Resumo:
The aim of this study was to evaluate the effects of substituting soybean meal for urea on milk protein fractions (casein, whey protein and non-protein nitrogen) of dairy cows in three dietary levels. Nine mid-lactation Holstein cows were used in a 3 x 3 Latin square arrangement, composed of 3 treatments, 3 periods of 21 days each, and 3 squares. The treatments consisted of three different diets fed to lactating cows, which were randomly assigned to three groups of three animals: (A) no urea inclusion, providing 100% of crude protein (CP), rumen undegradable protein (RUP) and rumen degradable protein (RDP) requirements, using soybean meal and sugarcane as roughage; (B) urea inclusion at 7.5 g/kg DM in partial substitution of soybean meal CP equivalent; (C) urea inclusion at 15 g/kg DM in partial substitution of soybean meal CP equivalent. Rations were isoenergetic and isonitrogenous-1 60 g/kg DM of crude protein and 6.40 MJ/kg DM of net energy for lactation. When the data were analyzed by simple polynomial regression, no differences were observed among treatments in relation to milk CP content, true protein, casein, whey protein, non-casein and non-protein nitrogen, or urea. The milk true protein:crude protein and casein:true protein ratios were not influenced by substituting soybean meal for urea in the diet. Based on the results it can be concluded that the addition of urea up to 15 g/kg of diet dry matter in substitution of soybean meal did not alter milk protein concentration casein, whey protein and its non-protein fractions, when fed to lactating dairy cows. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A semi-detailed gravity survey was carried out over an area of 650 km(2) localized in the Eo-Neoproterozoic coastal zone of Paraiba State where 548 new gravity stations were added to the existing database. Gravity measurements were made with a LaCoste and Romberg model G meter with a precision of 0.04 mGal. The altitude was determined by barometric levelling with a fixed base achieving a 1.2 m measure of uncertainty, corresponding to an overall accuracy of 0.24 mGal for the Bouguer anomaly. The residual Bouguer map for a 7th degree regional polynomial showed a circumscribed negative anomaly coincident with a localized aero-magnetic anomaly and with hydro-thermally altered outcrops, near the city of Itapororoca. The 3D gravity modelling, constrained by geologic mapping was interpreted as a low density, fractured and/or altered material with a most probable volume of approximately 23 km(3), extending to about 8,500 m depth. This result is in accordance with a volcanic body associated with hydrothermal processes accompanied by surface mineralization evidence, which may be of interest to the mining industry.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.