51 resultados para Multi Walled Carbon Nanotubes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine (CoPc), modified multi-walled carbon nanotube (MWCNT), and paraffin composite electrode for the quantitative determination of epinephrine (EP) in human urine samples. The electrochemical profile of the proposed composite electrode was analyzed by differential pulse voltammetry (DPV) that showed a shift of the oxidation peak potential of EP at 175 mV to less positive value, compared with a paraffin/graphite composite electrode without CoPc. DPV experiments in PBS at pH 6.0 were performed to determine EP without any previous step of extraction, clean-up, and derivatization, in the range from 1.33 to 5.50 mu mol L(-1), with a detection limit of 15.6 nmol L(-1) (2.86) of EP in electrolyte prepared with purified water. The lifetime of the proposed sensors was at least over 1000 determinations with 1.7 and 3.1 repeatability and reproducibility relative standard deviations, respectively. Human urine samples without any purification step were successfully analyzed under the standard addition method using paraffin/MWCNT/CoPc composite electrode. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ab initio simulations of carbon nanotubes interacting with ascorbic acid and nicotinamide are reported. The electronic transport properties of these systems are studied using a combination of density functional theory and non-equilibrium Green`s functions methods. The adsorptions of both molecules are observed to depend strongly on their functionalization. The interaction through the appropriate functionalized species modifies the structural and electronic properties of the original system, resulting in a chemisorption regime. Changes in the electronic transport properties are also observed, with reductions on the total electronic transmission probabilities. Nevertheless, when the molecules interact through the pristine form, a physisorption interaction is observed with insignificant structural and electronic transport changes. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SIDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 angstrom, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 angstrom. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO(2)-Ta(2)O(5) chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (Con Cap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors
Resumo:
The integration of carbon nanotubes in conjunction with a chemical or biological recognition element into a semiconductor field-effect device (FED) may lead to new (bio)chemical sensors. In this study, we present a new concept to develop field-effect-based sensors, using a light-addressable potentiometric sensor (LAPS) platform modified with layer-by-layer (LbL) films of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. Film growth was monitored for each layer adsorbed on the LAPS chip by Measuring current-voltage (IIV) curves. The morphology of the films was analyzed via atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), revealing the formation of a highly interconnected nanostructure of SWNTs-network into the dendrimer layers. Constant current (CC) Measurements showed that the incorporation of the PAMAM/SWNT LbL film containing LIP to 6 bilayers onto the LAPS Structure has a high pH sensitivity of ca. 58 mV/pH. The biosensing ability of the devices was tested for penicillin G via adsorptive immobilization of the enzyme penicillinase atop the LgL film. LAPS architectures modified with the LbL film exhibited higher sensitivity, ca. 100 mV/decade, in comparison to ca. 79 mV/decade for all unmodified LAPS, which demonstrates the potential application of the CNT-LbL Structure in field-effect-based (bio)chemical sensors.
Resumo:
In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work we present ab initio calculations of the formation energies and stability of different types of multi-vacancies in carbon nanotubes. We demonstrate that, as in the case of graphene, the reconstruction of the defects has drastic effects on the energetics of the tubes. In particular, the formation of pentagons eliminates the dangling bonds thus lowering the formation energy. This competition leads to vacancies having an even number of carbon atoms removed to be more stable. Finally the appearance of magic numbers indicating more stable defects can be represented by a model for the formation energies that is based on the number of dangling bonds of the unreconstructed system, the pentagons and the relaxation of the final form of the defect formed after the relaxation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.
Resumo:
We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.
Resumo:
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.
Resumo:
We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.