6 resultados para Metalorganic Chemical Vapor Deposition

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin silicon nitride films were prepared at 350 degrees C by inductively coupled plasma chemical vapor deposition on Si(100) substrates under different NH(3)/SiH(4) or N(2)/SiH(4) gas mixture. The chemical composition and bonding structure of the deposited films were investigated as a function of the process parameters, such as the gas flow ratio NH(3)/SiH(4) or N(2)/SiH(4) and the RF power, using X-ray photoelectron spectroscopy (XPS). The gas flow ratio was 1.4, 4.3, 7.2 or 9.5 and the RF power, 50 or 100 W. Decomposition results of Si 2p XPS spectra indicated the presence of bulk Si, under-stoichiometric nitride, stoichiometric nitride Si(3)N(4), oxynitride SiN(x)O(y), and stoichiometric oxide SiO(2), and the amounts of these compounds were strongly influenced by the two process parameters. These results were consistent with those obtained from N 1s XPS spectra. The chemical composition ratio N/Si in the film increased with increasing the gas flow ratio until the gas flow ratio reached 4.3, reflecting the high reactivity of nitrogen, and stayed almost constant for further increase in gas flow ratio, the excess nitrogen being rejected from the growing film. A considerable and unexpected incorporation of contaminant oxygen and carbon into the depositing film was observed and attributed to their high chemical reactivity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas-phase ion/molecule reactions of F(-) and EtO(-) with Ge(OEt)(4) yield readily and exclusively pentacoordinated complexes XGe(OEt)(4)(-) (X = F, EtO) at pressures in the 10(-8) T range as observed by FT-ICR techniques. These hypervalent species are prone to undergo sequential fragmentations induced by infrared multiphoton excitation that lead to a variety of germyl and germanate anions. In the case of FGe(OEt)(4)(-), three primary competitive channels are observed in the IRMPD process that can be identified as (EtO)(3)GeO(-), F(EtO)(2)GeO(-) and (EtO)(3)Ge(-). Ab initio calculations have been carried out to characterize the primary fragmentation paths induced by IRMPD and the most favorable structure of the resulting anions. The gas-phase acidity of a number of these germanium-containing ions have been estimated by bracketing experiments and by theoretical calculations. Germanate anions such as (EtO)(3)GeO(-) undergo some interesting reactions with H(2)S to give rise to anions such as (EtO)(3)GeS(-) and (EtO)(2)Ge(OH)S(-). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10(21) atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman`s spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 00). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process. (C) 2011 Elsevier B.V. All rights reserved.