15 resultados para Maximal Monotone Operators
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
l Suppose that X, Y. A and B are Banach spaces such that X is isomorphic to Y E) A and Y is isomorphic to X circle plus B. Are X and Y necessarily isomorphic? In this generality. the answer is no, as proved by W.T. Cowers in 1996. In the present paper, we provide a very simple necessary and sufficient condition on the 10-tuples (k, l, m, n. p, q, r, s, u, v) in N with p+q+u >= 3, r+s+v >= 3, uv >= 1, (p,q)$(0,0), (r,s)not equal(0,0) and u=1 or v=1 or (p. q) = (1, 0) or (r, s) = (0, 1), which guarantees that X is isomorphic to Y whenever these Banach spaces satisfy X(u) similar to X(p)circle plus Y(q), Y(u) similar to X(r)circle plus Y(s), and A(k) circle plus B(l) similar to A(m) circle plus B(n). Namely, delta = +/- 1 or lozenge not equal 0, gcd(lozenge, delta (p + q - u)) divides p + q - u and gcd(lozenge, delta(r + s - v)) divides r + s - v, where 3 = k - I - in + n is the characteristic number of the 4-tuple (k, l, m, n) and lozenge = (p - u)(s - v) - rq is the discriminant of the 6-tuple (p, q, r, s, U, v). We conjecture that this result is in some sense a maximal extension of the classical Pelczynski`s decomposition method in Banach spaces: the case (1, 0. 1, 0, 2. 0, 0, 2. 1. 1). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Methods: Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E-2 by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. Results: There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Conclusions: Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
Objective: We investigated the influence of acute inflammation in skin isograft acceptance. Methods: Two mouse lines selected for maximal (AIR(MAX)) or minimal inflammatory response (AIR(MIN)) were transplanted with syngeneic skin. Cellular infiltrates and cytokine production were measured 1, 3, 7 or 14 days post-transplantation. The percentage of CD4(+) CD25(+) Foxp3(+) cells in the lymph nodes was also evaluated. Results: Grafts were totally accepted in 100% of AIR(MAX) and in 26% of AIR(MIN) mice. In the latter, partial acceptance was observed in 74% of the animals. Emigrated cells were basically PMN and were enhanced in AIR(MAX) transplants. IL-10 production by graft infiltrating cells showed no interline differences. IFN-gamma was increased in AIR(MIN) grafts at day 14 and lower percentages of CD4(+)CD25(+)Foxp3(+) cells in the lymph nodes were observed in these mice. Conclusions: Our data suggest that differences in graft acceptance might be due to a lack of appropriate regulation of the inflammatory response in AIR(MIN) mice compromising the self/non-self recognition.
Resumo:
This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inspired by the theory of semigroups of growth a, we construct an evolution process of growth alpha. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that. under natural assumptions. a reasonable concept of solution can be given to Such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Holder continuous functions and to a parabolic problem in a domain Omega subset of R(n) with a one dimensional handle.
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
This paper completes the review of the theory of self-adjoint extensions of symmetric operators for physicists as a basis for constructing quantum-mechanical observables. It contains a comparative presentation of the well-known methods and a newly proposed method for constructing ordinary self-adjoint differential operators associated with self-adjoint differential expressions in terms of self-adjoint boundary conditions. The new method has the advantage that it does not require explicitly evaluating deficient subspaces and deficiency indices (these latter are determined in passing) and that boundary conditions are of explicit character irrespective of the singularity of a differential expression. General assertions and constructions are illustrated by examples of well-known quantum-mechanical operators like momentum and Hamiltonian.
Resumo:
Extending our previous work `Fields on the Poincare group and quantum description of orientable objects` (Gitman and Shelepin 2009 Eur. Phys. J. C 61 111-39), we consider here a classification of orientable relativistic quantum objects in 3 + 1 dimensions. In such a classification, one uses a maximal set of ten commuting operators (generators of left and right transformations) in the space of functions on the Poincare group. In addition to the usual six quantum numbers related to external symmetries (given by left generators), there appear additional quantum numbers related to internal symmetries (given by right generators). Spectra of internal and external symmetry operators are interrelated, which, however, does not contradict the Coleman-Mandula no-go theorem. We believe that the proposed approach can be useful for the description of elementary spinning particles considered as orientable objects. In particular, it gives a group-theoretical interpretation of some facts of the existing phenomenological classification of spinning particles.
Resumo:
Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.
Resumo:
We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.
Resumo:
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We consider the problem of classifying those groups whose maximal cyclic subgroups are maximal. We give a complete classification of those groups with this property and which are either soluble or residually finite.