13 resultados para Macaco-prego galego
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Hemangiosarcoma is a common neoplasm in dogs and less frequently seen in cats. In nonhuman primates, this tumor is rarely reported. A 17 year-old female spider monkey (Ateles paniscus) was submitted an ultrasound exam due to gestation suspicion, which was seen a circular mass intra-uterine measuring 1.3 cm. New exams shown increase of the mass to 4.4 x 3.0 cm associated with a viable fetus. Was realized cesarean with ovariohysterectomy and excision of the mass; however the animal died in less than 24 hours after the surgery. In the necropsy, severe hemoabdomen was evidenced, although the surgical stumps were properly ligated and the complete sutures. Macroscopically, the uterine mass was soft, dark heterogeneous and measuring 5.0 cm in diameter. Histologically was visualized proliferation of spindle cells that form vascular channels replete of erythrocytes and some with thrombus, marked pleomorphism, nucleolus evident, binucleated cells and mitotic figures were rare. The immunohistochemistry (IHC) was performed, using streptavidin-biotin peroxidase technique (Dako Cytomation, USA) with the use of antibodies CD31 (clone JC/70A), CD34 (clone QB-END/10). The IHC showed a specific antigen-antibody reaction for CD31. According to localization, morphology and IHC, the present study reports a primary uterine hemangiosarcoma in a spider monkey that caused hemostatic abnormalities and consequent death of the animal.
Resumo:
This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.
Resumo:
We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).
Resumo:
A group G is representable in a Banach space X if G is isomorphic to the group of isometrics on X in some equivalent norm. We prove that a countable group G is representable in a separable real Banach space X in several general cases, including when G similar or equal to {-1,1} x H, H finite and dim X >= vertical bar H vertical bar or when G contains a normal subgroup with two elements and X is of the form c(0)(Y) or l(p)(Y), 1 <= p < +infinity. This is a consequence of a result inspired by methods of S. Bellenot (1986) and stating that under rather general conditions on a separable real Banach space X and a countable bounded group G of isomorphisms on X containing -Id, there exists an equivalent norm on X for which G is equal to the group of isometrics on X. We also extend methods of K. Jarosz (1988) to prove that any complex Banach space of dimension at least 2 may be renormed with an equivalent complex norm to admit only trivial real isometries, and that any complexification of a Banach space may be renormed with an equivalent complex norm to admit only trivial and conjugation real isometrics. It follows that every real Banach space of dimension at least 4 and with a complex structure may be renormed to admit exactly two complex structures up to isometry, and that every real Cartesian square may be renormed to admit a unique complex structure up to isometry.
Resumo:
The arteriovenous fistula (AVF) is characterized by enhanced blood flow and is the most widely used vascular access for chronic haemodialysis (Sivanesan et al., 1998). A large proportion of the AVF late failures are related to local haemodynamics (Sivanesan et al., 1999a). As in AVF, blood flow dynamics plays an important role in growth, rupture, and surgical treatment of aneurysm. Several techniques have been used to study the flow patterns in simplified models of vascular anastomose and aneurysm. In the present investigation, Computational Fluid Dynamics (CFD) is used to analyze the flow patterns in AVF and aneurysm through the velocity waveform obtained from experimental surgeries in dogs (Galego et al., 2000), as well as intra-operative blood flow recordings of patients with radiocephalic AVF ( Sivanesan et al., 1999b) and physiological pulses (Aires, 1991), respectively. The flow patterns in AVF for dog and patient surgeries data are qualitatively similar. Perturbation, recirculation and separation zones appeared during cardiac cycle, and these were intensified in the diastole phase for the AVF and aneurysm models. The values of wall shear stress presented in this investigation of AVF and aneurysm models oscillated in the range that can both cause damage to endothelial cells and develop atherosclerosis.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
l Suppose that X, Y. A and B are Banach spaces such that X is isomorphic to Y E) A and Y is isomorphic to X circle plus B. Are X and Y necessarily isomorphic? In this generality. the answer is no, as proved by W.T. Cowers in 1996. In the present paper, we provide a very simple necessary and sufficient condition on the 10-tuples (k, l, m, n. p, q, r, s, u, v) in N with p+q+u >= 3, r+s+v >= 3, uv >= 1, (p,q)$(0,0), (r,s)not equal(0,0) and u=1 or v=1 or (p. q) = (1, 0) or (r, s) = (0, 1), which guarantees that X is isomorphic to Y whenever these Banach spaces satisfy X(u) similar to X(p)circle plus Y(q), Y(u) similar to X(r)circle plus Y(s), and A(k) circle plus B(l) similar to A(m) circle plus B(n). Namely, delta = +/- 1 or lozenge not equal 0, gcd(lozenge, delta (p + q - u)) divides p + q - u and gcd(lozenge, delta(r + s - v)) divides r + s - v, where 3 = k - I - in + n is the characteristic number of the 4-tuple (k, l, m, n) and lozenge = (p - u)(s - v) - rq is the discriminant of the 6-tuple (p, q, r, s, U, v). We conjecture that this result is in some sense a maximal extension of the classical Pelczynski`s decomposition method in Banach spaces: the case (1, 0. 1, 0, 2. 0, 0, 2. 1. 1). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2(m) circle plus [0, alpha], the topological sums of Cantor cubes 2(m), with m smaller than the first sequential cardinal, and intervals of ordinal numbers [0, alpha]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C(2(m) circle plus [0, alpha]) spaces with m >= N(0) and alpha >= omega(1) are the trivial ones. This result leads to some elementary questions on large cardinals.
Resumo:
Suppose that X and Y are Banach spaces isomorphic to complemented subspaces of each other. In 1996, W. T. Gowers solved the Schroeder- Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. However, if X-2 is complemented in X with supplement A and Y-2 is complemented in Y with supplement B, that is, { X similar to X-2 circle plus A Y similar to Y-2 circle plus B, then the classical Pelczynski`s decomposition method for Banach spaces shows that X is isomorphic to Y whenever we can assume that A = B = {0}. But unfortunately, this is not always possible. In this paper, we show that it is possible to find all finite relations of isomorphism between A and B which guarantee that X is isomorphic to Y. In order to do this, we say that a quadruple (p, q, r, s) in N is a P-Quadruple for Banach spaces if X is isomorphic to Y whenever the supplements A and B satisfy A(p) circle plus B-q similar to A(r) circle plus B-s . Then we prove that (p, q, r, s) is a P-Quadruple for Banach spaces if and only if p - r = s - q = +/- 1.
Resumo:
Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with supplements A and B. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q >= 1, r + s >= 1 and u, v is an element of N*, to provide that X is isomorphic to Y, whenever these spaces satisfy the following decomposition scheme A(u) similar to X(P) circle plus Y(q) B(v) similar to X(r) circle plus Y(s). Namely, Phi = (p - u)(s - v) - (q + u)(r + v) is different from zero and Phi divides p + q and r + s. These sextuples are called Cantor-Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1) indicates the well-known Pelczynski`s decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder-Bernstein problem become evident.