61 resultados para Language processing

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An implementation of a computational tool to generate new summaries from new source texts is presented, by means of the connectionist approach (artificial neural networks). Among other contributions that this work intends to bring to natural language processing research, the use of a more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may bring an increase in computational efficiency when compared to the sa-called biologically implausible algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach for assisting low-literacy readers in accessing Web online information. The oEducational FACILITAo tool is a Web content adaptation tool that provides innovative features and follows more intuitive interaction models regarding accessibility concerns. Especially, we propose an interaction model and a Web application that explore the natural language processing tasks of lexical elaboration and named entity labeling for improving Web accessibility. We report on the results obtained from a pilot study on usability analysis carried out with low-literacy users. The preliminary results show that oEducational FACILITAo improves the comprehension of text elements, although the assistance mechanisms might also confuse users when word sense ambiguity is introduced, by gathering, for a complex word, a list of synonyms with multiple meanings. This fact evokes a future solution in which the correct sense for a complex word in a sentence is identified, solving this pervasive characteristic of natural languages. The pilot study also identified that experienced computer users find the tool to be more useful than novice computer users do.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that the processing of auditory information by the perisylvian polymicrogyric cortex may be different from the normal cortex. To characterize the auditory processing in bilateral perisylvian syndrome, we examined ten patients with perisylvian polymicrogyria (Group 1) and seven control children (Group 11). Group I was composed by four children with bilateral perisylvian polymicrogyria and six children with bilateral posterior perisylvian polymicrogyria. The evaluation included neurological and neuroimaging investigation, intellectual quotient and audiological assessment (audiometry and behavior auditory tests). The results revealed a statistically significant difference between the groups in the behavioral auditory tests, Such as, digits dichotic test, nonverbal dichotic test (specifically in right attention), and random gap detection/random gap detection expanded tests. Our data showed abnormalities in the auditory processing of children with perisylvian polymicrogyria, suggesting that perisylvian polymicrogyric cortex is functionally abnormal. We also found a correlation between the severity of our auditory findings and the extent of the cortical abnormality. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort. (JINS, 2011, 17, 485-493)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addressed the use of conventional and vegetable origin polyurethane foams to extract C. I. Acid Orange 61 dye. The quantitative determination of the residual dye was carried out with an UV/Vis absorption spectrophotometer. The extraction of the dye was found to depend on various factors such as pH of the solution, foam cell structure, contact time and dye and foam interactions. After 45 days, better results were obtained for conventional foam when compared to vegetable foam. Despite presenting a lower percentage of extraction, vegetable foam is advantageous as it is considered a polymer with biodegradable characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to describe preliminary results from the cross-cultural adaptation of the Quality of Life Assessment Questionnaire, used to measure health related quality of life (HRQL) in Brazilian children aged between 5 and 11 with HIV/AIDS. The cross-cultural model evaluated the Concept, Item, Semantic and Measurement Equivalences (internal consistency and intra-observer reliability). Evaluation of the conceptual, item, semantic equivalences showed that the Portuguese version is pertinent for the Brazilian context. Four of seven domains showed internal consistency above 0.70 (α: 0.76-0.90) and five of seven revealed intra-observer reliability (ricc: 0.41-0.70). This first Portuguese version of the HRQL questionnaire can be understood as a valuable tool for assessing children's HRQL, but further studies with large samples and more robust analyses are recommended before use in the Brazilian context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new food classification which assigns foodstuffs according to the extent and purpose of the industrial processing applied to them. Three main groups are defined: unprocessed or minimally processed foods (group 1), processed culinary and food industry ingredients (group 2), and ultra-processed food products (group 3). The use of this classification is illustrated by applying it to data collected in the Brazilian Household Budget Survey which was conducted in 2002/2003 through a probabilistic sample of 48,470 Brazilian households. The average daily food availability was 1,792 kcal/person being 42.5% from group 1 (mostly rice and beans and meat and milk), 37.5% from group 2 (mostly vegetable oils, sugar, and flours), and 20% from group 3 (mostly breads, biscuits, sweets, soft drinks, and sausages). The share of group 3 foods increased with income, and represented almost one third of all calories in higher income households. The impact of the replacement of group 1 foods and group 2 ingredients by group 3 products on the overall quality of the diet, eating patterns and health is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthodox teaching and practice on nutrition and health almost always focuses on nutrients, or else on foods and drinks. Thus, diets that are high in folate and in green leafy vegetables are recommended, whereas diets high in saturated fat and in full-fat milk and other dairy products are not recommended. Food guides such as the US Food Guide Pyramid are designed to encourage consumption of healthier foods, by which is usually meant those higher in vitamins, minerals and other nutrients seen as desirable.What is generally overlooked in such approaches, which currently dominate official and other authoritative information and education programmes, and also food and nutrition public health policies, is food processing. It is now generally acknowledged that the current pandemic of obesity and related chronic diseases has as one of its important causes increased consumption of convenience including pre-prepared foods(1,2). However, the issue of food processing is largely ignored or minimised in education and information about food, nutrition and health, and also in public health policies.A short commentary cannot be comprehensive, and a general proposal such as that made here is bound to have some problems and exceptions. Also, the social, cultural, economic and environmental consequences of food processing are not discussed here. Readers comments and queries are invited