SAB(IO): A BIOLOGICALLY PLAUSIBLE CONNECTIONIST APPROACH TO AUTOMATIC TEXT SUMMARIZATION


Autoria(s): ORRU, T.; ROSA, J. L. G.; ANDRADE NETTO, M. L.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2008

Resumo

An implementation of a computational tool to generate new summaries from new source texts is presented, by means of the connectionist approach (artificial neural networks). Among other contributions that this work intends to bring to natural language processing research, the use of a more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may bring an increase in computational efficiency when compared to the sa-called biologically implausible algorithms.

Identificador

APPLIED ARTIFICIAL INTELLIGENCE, v.22, n.9, p.896-920, 2008

0883-9514

http://producao.usp.br/handle/BDPI/17486

10.1080/08839510802296044

http://dx.doi.org/10.1080/08839510802296044

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS INC

Relação

Applied Artificial Intelligence

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS INC

Palavras-Chave #NEURAL-NETWORKS #ABSTRACTS #Computer Science, Artificial Intelligence #Engineering, Electrical & Electronic
Tipo

article

original article

publishedVersion