12 resultados para Intestinal epithelium

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acute enteritis is commonly followed by intestinal neuromuscular dysfunction, including prolonged hyperexcitability of enteric neurons. Such motility disorders are associated with maintained increases in immune cells adjacent to enteric ganglia and in the mucosa. However, whether the commonly used animal model, trinitrobenzene sulphonate (TNBS)-induced enteritis, causes histological and immune cell changes similar to human enteric neuropathies is not clear. We have made a detailed study of the mucosal damage and repair and immune cell invasion following intralumenal administration of TNBS. Intestines from untreated, sham-operated and TNBS-treated animals were examined at 3 h to 56 days. At 3 h, the mucosal surface was completely ablated, by 6 h an epithelial covering was substantially restored and by 1 day there was full re-epithelialisation. The lumenal epithelium developed from a squamous cell covering to a fully differentiated columnar epithelium with mature villi at about 7 days. Prominent phagocytic activity of enterocytes occurred at 1-7 days. A surge of eosinophils and T lymphocytes associated with the enteric nerve ganglia occurred at 3 h to 3 days. However, elevated immune cell numbers occurred in the lamina propria of the mucosa until 56 days, when eosinophils were still three times normal. We conclude that the disruption of the mucosal surface that causes TNBS-induced ileitis is brief, a little more than 6 h, and causes a transient immune cell surge adjacent to enteric ganglia. This is much briefer than the enteric neuropathy that ensues. Ongoing mucosal inflammatory reaction may contribute to the persistence of enteric neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt is one of the main components of cast metal alloys broadly used in dentistry. It is the constituent of 45 to 70% of numerous prosthetic works. There are evidences that metal elements cause systemic and local toxicity. The purpose of the present study was to evaluate the effects of cobalt on the junctional epithelium and reduced enamel epithelium of the first superior molar in rats, during lactation. To do this, 1-day old rats were used, whose mothers received 300mg of cobalt chloride per liter of distilled water in the drinker, during lactation. After 21 days, the rat pups were killed with an anesthetic overdose. The heads were separated, fixed in ""alfac"", decalcified and embedded in paraffin. Frontal sections stained with hematoxylin and eosin were employed. Karyometric methods allowed to estimate the following parameters: biggest, smallest and mean diameters, D/d ratio, perimeter, area, volume, volume/area ratio, eccentricity, form coefficient and contour index. Stereologic methods allow to evaluate: cytoplasm/nucleus ratio, cell and cytoplasm volume, cell number density, external surface/basal membrane ratio, thickness of the epithelial layers and surface density. All the collected data were subjected to statistic analysis by the non-parametric Wilcoxon-Mann-Whitney test. The nuclei of the studied tissues showed smaller values after karyometry for: diameters; perimeter, area, volume and volume/area ratio. Stereologically, it was observed, in the junctional epithelium and in the reduced enamel epithelium, smaller cells with scarce cytoplasm, reflected in the greater number of cells per mm3 of tissue. In this study, cobalt caused epithelial atrophy, indicating a direct action on the junctional and enamel epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yerba mate (Ilex paraguariensis) is rich in polyphenols, especially chlorogenic acids. Evidence suggests that dietary polyphenols could play a role in glucose absorption and metabolism. The aim of this study was to evaluate the antidiabetic properties of yerba mate extract in alloxan-induced diabetic Wistar rats. Animals (n = 41) were divided in four groups: nondiabetic control (NDC, n = 10), nondiabetic yerba mate (NDY, n = 10), diabetic control (DC, n = 11), and diabetic yerba mate (NDY, n = 10). The intervention consisted in the administration of yerba mate extract in a 1 g extract/kg body weight dose for 28 days; controls received saline solution only. There were no significant differences in serum glucose, insulin, and hepatic glucose-6-phosphatase activity between the groups that ingested yerba mate extract (NDY and DY) and the controls (NDC and DC). However, the intestinal SGLT1 gene expression was significantly lower in animals that received yerba mate both in upper (p = 0.007) and middle (p < 0.001) small intestine. These results indicate that bioactive compounds present in yerba mate might be capable of interfering in glucose absorption, by decreasing SGLT1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Early weaning (EW) increases proliferation of the gastric epithelium in parallel with higher expression of transforming growth factor alpha and its receptor epidermal growth factor receptor (EGFR). The primary objective of the present study was to examine involvement of EGFR signalling in regulating mucosal cell proliferation during the early weaning period. Materials and methods: Fifteen-day-old rats were split into two groups: suckling (control) and EW, in which pups were separated from the dam. Animals were killed daily until the 18th day, 3 days after onset of treatment. To investigate the role of EGFR in proliferation control, EW pups were injected with AG1478, an EGFR inhibitor; signalling molecules, proliferative indices and cell cycle-related proteins were evaluated. Results: EW increased ERK1/2 and Src phosphorylation at 17 days, but p-Akt levels were unchanged. Moreover, at 17 days, AG1478 administration impaired ERK phosphorylation, whereas p-Src and p-Akt were not altered. AG1478 treatment reduced mitotic and DNA synthesis indices, which were determined on HE-stained and BrdU-labelled sections. Finally, AG1478 injection decreased p21 levels in the gastric mucosa at 17 days, while no changes were detected in p27, cyclin E, CDK2, cyclin D1 and CDK4 concentrations. Conclusions: EGFR is part of the mechanism that regulates cell proliferation in rat gastric mucosa during early weaning. We suggest that such responses might depend on activation of MAPK and/or Src signalling pathways and regulation of p21 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute lung injury following intestinal I/R depends on neutrophil-endothelial cell interactions and on cytokines drained from the gut through the lymph. Among the mediators generated during I/R, increased serum levels of IL-6 and NO are also found and might be involved in acute lung injury. Once intestinal ischemia itself may be a factor of tissue injury, in this study, we investigated the presence of IL-6 in lymph after intestinal ischemia and its effects on human umbilical vein endothelial cells (HUVECs) detachment. The involvement of NO on the increase of lung and intestinal microvascular permeability and the lymph effects on HUVEC detachment were also studied. Upon anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2-h intestinal reperfusion. Rats were treated with the nonselective NO synthase (NOS) inhibitor L-NAME (N(omega)-nitro-L-arginine methyl ester) or with the selective inhibitor of iNOS aminoguanidine 1 h before superior mesenteric artery occlusion. Whereas treatment with L-NAME during ischemia increased both IL-6 levels in lymph and lung microvascular permeability, aminoguanidine restored the augmented intestinal plasma extravasation due to ischemia and did not induce IL-6 in lymph. On the other hand, IL-6 and lymph of intestinal I/R detached the HUVECs, whereas lymph of ischemic rats upon L-NAME treatment when incubated with anti-IL-6 prevented HUVEC detachment. It is shown that the intestinal ischemia itself is sufficient to increase intestinal microvascular permeability with involvement of iNOS activation. Intestinal ischemia and absence of constitutive NOS activity leading to additional intestinal stress both cause release of IL-6 and increase of lung microvascular permeability. Because anti-IL-6 prevented the endothelial cell injury caused by lymph at the ischemia period, the lymph-borne IL-6 might be involved with endothelial cell activation. At the reperfusion period, this cytokine does not seem to be modulated by NO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the genera Bacteroides and Parabacteroides are important constituents of both human and animal intestinal microbiota, and are significant facultative pathogens. In this study, the ability of Bacteroides spp. and Parabacteroides distasonis isolated from both diarrhoeal and normal stools (n = 114) to adhere to and invade HEp-2 cells was evaluated. The presence of putative virulence factors such as capsule and fimbriae was also investigated. Adherence to HEp-2 cells was observed in 75.4% of the strains, which displayed non-localized clusters. Invasion was observed in 37.5% and 26% of the strains isolated from diarrhoeal and non-diarrhoeal stools, respectively. All strains displayed a capsule, whereas none of them showed fimbriae-like structures. This is the first report of the ability of Bacteroides spp. and P. distasonis to adhere to and invade cultured HEp-2 epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is general consensus that the effects of intrinsic aging on the oral mucosa are relatively small, though potentially important to understanding the pathologies present in the aged animals. Objective: In this paper, the development of dorsal surface of rat tongue was examined using transmission electron microscopy (TEM) and high-resolution scanning electron microscopy (HRSEM) in order to understand the age-related structural and ultrastructural changes experimentally. Methods: In this study, we used female rats 75 and 720 days old (adult and aging). Tissues of rat tongue were prepared and the specimens submitted to HRSEM and TEM techniques. Results: The analysis of HRSEM and TEM demonstrated that the same characteristic keratinous epithelium was found in aging animals, however with some modifications. Conclusion: We agree that there are obvious changes in the oral mucosa with aging and these modifications can be observed starting from the ultrastructural aspects. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with chronic pancreatitis may have abnormal gastrointestinal transit, but the factors underlying these abnormalities are poorly understood. Gastrointestinal transit was assessed, in 40 male outpatients with alcohol-related chronic pancreatitis and 18 controls, by scintigraphy after a liquid meal labeled with (99m)technetium-phytate. Blood and urinary glucose, fecal fat excretion, nutritional status, and cardiovascular autonomic function were determined in all patients. The influence of diabetes mellitus, malabsorption, malnutrition, and autonomic neuropathy on abnormal gastrointestinal transit was assessed by univariate analysis and Bayesian multiple regression analysis. Accelerated gastrointestinal transit was found in 11 patients who showed abnormally rapid arrival of the meal marker to the cecum. Univariate and Bayesian analysis showed that diabetes mellitus and autonomic neuropathy had significant influences on rapid transit, which was not associated with either malabsorption or malnutrition. In conclusion, rapid gastrointestinal transit in patients with alcohol-related chronic pancreatitis is related to diabetes mellitus and autonomic neuropathy.