15 resultados para Group Algebra
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
Let F be an infinite field of characteristic different from 2, G a group and * an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the *-symmetric units of FG satisfy a group identity. When * is the classical involution induced from g -> g(-1), g is an element of G, this result was obtained in [ A. Giambruno, S. K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443-461]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.
Resumo:
We investigate polynomial identities on an alternative loop algebra and group identities on its (Moufang) unit loop. An alternative loop ring always satisfies a polynomial identity, whereas whether or not a unit loop satisfies a group identity depends on factors such as characteristic and centrality of certain kinds of idempotents.
Resumo:
We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.
Resumo:
Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.
Resumo:
In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.
Resumo:
Marciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ZG of a solvable and finite group G, such that u has infinite order modulo the center of U(ZG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ZG which is either a Bass cyclic unit or a bicyclic unit.
Resumo:
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).