115 resultados para Genomic data integration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Papaya (Carica papaya) is a relevant tropical crop and physico-chemical changes take place very quickly, as a consequence of activation of biochemical pathways by de nova synthesis of several proteins. Thus, in order to have information on the changes in gene expression in ripening papaya, transcripts from the pulp of unripe and ripe fruit were profiled by differential-display RT-PCR (DDRT-PCR). Seventy transcript derived fragments (TDFs) isolated from gels were re-amplified by PCR and differential expression of 40 papaya genes was confirmed by reverse northern blotting. Twenty-nine positively cloned TDFs were sequenced, and 17 were putatively identified by homology search. Ten of these genes were downregulated during ripening and UDP-glucose glucosyltransferase, alpha-2 importin, RNase L inhibitor-like protein, and a syntaxin protein were identified. Among the up-regulated genes there was a carboxylesterase, an integral membrane Yip1 family protein, a glycosyl hydrolase family-like protein and an endopolygalacturonase. Considering their relatedness to papaya quality, the fragments of genes potentially implicated in carbohydrate metabolism and pulp softening may be considered of interest for further studies. According to the results, differential display was a feasible approach to investigate differences in gene expression during fruit ripening, and can provide interesting information about those fruits whose genomic data is scarce, as is the case of papayas. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genus Schistosoma is composed of blood flukes that infect vertebrates, from which three species are major causative agents of human schistosomiasis, a tropical disease that affects more than 200 million people. Current models of the recent evolution of Schistosoma indicate multiple events of migration and speciation from an Asian ancestral species. Transposable elements are important drivers of genome evolution and have been hypothesised to have an important role in speciation. In this work, we describe a comprehensive inventory of Schistosoma mansoni and Schistosoma japonicum retrotransposons, based on their recently published genomic data. We find a considerable difference in retrotransposon representation between the two species (22% and 13%, respectively). A large part of this difference can be attributed to higher representation of two previously described families of S. mansoni retrotransposons (SR2 and Perere-3/SR3), compared with the representation of their closest relative families in S. japonicum. A more detailed analysis suggests that these two S. mansoni families were the subject of recent bursts of transposition that were not paralleled by their S. japonicum counterparts. We hypothesise that these bursts could be a consequence of the evolutionary pressure resulting from migration of Schistosoma from Asia to Africa and their establishment in this new environment, helping both speciation and adaptation. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the availability of a large amount of genomic data it is expected that the influence of single nucleotide variations (SNVs) in many biological phenomena will be elucidated. Here, we approached the problem of how SNVs affect alternative splicing. First, we observed that SNVs and exonic splicing regulators (ESRs) independently show a biased distribution in alternative exons. More importantly, SNVs map more frequently in ESRs located in alternative exons than in ESRs located in constitutive exons. By looking at SNVs associated with alternative exon/intron borders (by their common presence in the same cDNA molecule), we observed that a specific type of ESR, the exonic splicing silencers (ESSs), are more frequently modified by SNVs. Our results establish a clear association between genetic diversity and alternative splicing involving ESSs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dherte PM, Negrao MPG, Mori Neto S, Holzhacker R, Shimada V, Taberner P, Carmona MJC - Smart Alerts: Development of a Software to Optimize Data Monitoring. Background and objectives: Monitoring is useful for vital follow-ups and prevention, diagnosis, and treatment of several events in anesthesia. Although alarms can be useful in monitoring they can cause dangerous user`s desensitization. The objective of this study was to describe the development of specific software to integrate intraoperative monitoring parameters generating ""smart alerts"" that can help decision making, besides indicating possible diagnosis and treatment. Methods: A system that allowed flexibility in the definition of alerts, combining individual alarms of the parameters monitored to generate a more elaborated alert system was designed. After investigating a set of smart alerts, considered relevant in the surgical environment, a prototype was designed and evaluated, and additional suggestions were implemented in the final product. To verify the occurrence of smart alerts, the system underwent testing with data previously obtained during intraoperative monitoring of 64 patients. The system allows continuous analysis of monitored parameters, verifying the occurrence of smart alerts defined in the user interface. Results: With this system a potential 92% reduction in alarms was observed. We observed that in most situations that did not generate alerts individual alarms did not represent risk to the patient. Conclusions: Implementation of software can allow integration of the data monitored and generate information, such as possible diagnosis or interventions. An expressive potential reduction in the amount of alarms during surgery was observed. Information displayed by the system can be oftentimes more useful than analysis of isolated parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leite-Dellova DC, Malnic G, Mello-Aires M. Genomic and non-genomic stimulatory effect of aldosterone on H(+)-ATPase in proximal S3 segments. Am J Physiol Renal Physiol 300: F682-F691, 2011. First published December 29, 2010; doi:10.1152/ajprenal.00172.2010.-The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(-)(+)ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 +/- 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10),10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 +/- 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statement that pairs of individuals from different populations are often more genetically similar than pairs from the same population is a widespread idea inside and outside the scientific community. Witherspoon et al. [""Genetic similarities within and between human populations,"" Genetics 176:351-359 (2007)] proposed an index called the dissimilarity fraction (omega) to access in a quantitative way the validity of this statement for genetic systems. Witherspoon demonstrated that, as the number of loci increases, omega decreases to a point where, when enough sampling is available, the statement is false. In this study, we applied the dissimilarity fraction to Howells`s craniometric database to establish whether or not similar results are obtained for cranial morphological traits. Although in genetic studies thousands of loci are available, Howells`s database provides no more than 55 metric traits, making the contribution of each variable important. To cope with this limitation, we developed a routine that takes this effect into consideration when calculating. omega Contrary to what was observed for the genetic data, our results show that cranial morphology asymptotically approaches a mean omega of 0.3 and therefore supports the initial statement-that is, that individuals from the same geographic region do not form clear and discrete clusters-further questioning the idea of the existence of discrete biological clusters in the human species. Finally, by assuming that cranial morphology is under an additive polygenetic model, we can say that the population history signal of human craniometric traits presents the same resolution as a neutral genetic system dependent on no more than 20 loci.