5 resultados para Finite Chian Rings

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If * : G -> G is an involution on the finite group G, then * extends to an involution on the integral group ring Z[G] . In this paper, we consider whether bicyclic units u is an element of Z[G] exist with the property that the group < u, u*> generated by u and u* is free on the two generators. If this occurs, we say that (u, u*)is a free bicyclic pair. It turns out that the existence of u depends strongly upon the structure of G and on the nature of the involution. One positive result here is that if G is a nonabelian group with all Sylow subgroups abelian, then for any involution *, Z[G] contains a free bicyclic pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved