12 resultados para Cardiac Rehabilitation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the cardiac functioning in male Wistar rats after treatments with methionine and homocysteine thiolactone (HcyT). The rats were distributed into 3 groups and treated for 8 weeks. Group I was the control (CO) group, given water, group II was treated with methionine, and group III with HcyT (100 mg/kg). Morphometric and functional cardiac parameters were evaluated by echocardiography. Superoxide dismutase (SOD), catalase, and glutathione S-transferase activities, chemiluminescence, thiobarbituric acid reactive substances, and immunocontent were measured in the myocardium. Hyperhomocysteinemia was observed in rats submitted to the both treatments. The results showed diastolic function was compromised in HcyT group, seen by the increase of E/A (peak velocity of early (E) and late (A) diastolic filling) ratio, decrease in deceleration time of E wave and left ventricular isovolumic relaxation time. Myocardial performance index was increased in HcyT group and was found associated with increased SOD immunocontent. HcyT group demonstrated an increase in SOD, catalase, and glutatione S-transferase activity, and chemiluminescence and thiobarbituric acid reactive substances. Overall, these results indicated that HcyT induces a cardiac dysfunction and could be associated with oxidative stress increase in the myocardium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to research Candida dubliniensis among isolates present in a Brazilian yeast collection and to evaluate the main phenotypic methods for discrimination between C. albicans and C. dubliniensis from oral cavity. A total of 200 isolates, presumptively identified as C. albicans or C. dubliniensis obtained from heart transplant patients under immunosuppressive therapy, tuberculosis patients under antibiotic therapy, HIV-positive patients under antiretroviral therapy, and healthy subjects, were analyzed using the following phenotypic tests: formation and structural arrangement of chlamydospores on corn meal agar, casein agar, tobacco agar, and sunflower seed agar; growth at 45 degrees C; and germ tube formation. All strains were analyzed by polymerase chain reaction (PCR). In a preliminary screen for C. dubliniensis, 48 of the 200 isolates on corn meal agar, 30 of the 200 on casein agar, 16 of the 200 on tobacco agar, and 15 of the 200 on sunflower seed agar produced chlamydoconidia; 27 of the 200 isolates showed no or poor growth at 45 degrees C. All isolates were positive for germ tube formation. These isolates were considered suggestive of C. dubliniensis. All of them were subjected to PCR analysis using C. dubliniensis-specific primers. C. dubliniensis isolates were not found. C. dubliniensis isolates were not recovered in this study done with immunocompromised patients. Sunflower seed agar was the medium with the smallest number of isolates of C. albicans suggestive of C. dubliniensis. None of the phenotypic methods was 100% effective for discrimination between C. albicans and C. dubliniensis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging leads to changes in cardiac structure and function. Evidence suggests that the practice of regular exercise may prevent disturbances in the cardiovascular system during aging. We studied the effects of aging on the morphology and morphometry of cardiac neurons in Wistar rats and investigated whether a lifelong moderate exercise program could exert a protective effect toward some deleterious effects of aging. Aging caused a significant decline (28%) in the number of NADH-diaphorase-stained cardiac Animals submitted to a daily session of 60 min, 5 day/week, at 1.1 km/h of running in treadmill over the entire life span exhibited a reversion of the observed decline in the number of cardiac neurons. However, most interesting was that the introduction of this lifelong exercise protocol dramatically altered the sizes of cardiac neurons. There was a notable increase in the percentage of small neurons in the rats of the exercise group compared to the sedentary animals. This is the first time that a protective effect of lifelong regular aerobic exercise has been demonstrated on the deleterious effects of aging in cardiac neurons. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.