96 resultados para Banach space
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A group G is representable in a Banach space X if G is isomorphic to the group of isometrics on X in some equivalent norm. We prove that a countable group G is representable in a separable real Banach space X in several general cases, including when G similar or equal to {-1,1} x H, H finite and dim X >= vertical bar H vertical bar or when G contains a normal subgroup with two elements and X is of the form c(0)(Y) or l(p)(Y), 1 <= p < +infinity. This is a consequence of a result inspired by methods of S. Bellenot (1986) and stating that under rather general conditions on a separable real Banach space X and a countable bounded group G of isomorphisms on X containing -Id, there exists an equivalent norm on X for which G is equal to the group of isometrics on X. We also extend methods of K. Jarosz (1988) to prove that any complex Banach space of dimension at least 2 may be renormed with an equivalent complex norm to admit only trivial real isometries, and that any complexification of a Banach space may be renormed with an equivalent complex norm to admit only trivial and conjugation real isometrics. It follows that every real Banach space of dimension at least 4 and with a complex structure may be renormed to admit exactly two complex structures up to isometry, and that every real Cartesian square may be renormed to admit a unique complex structure up to isometry.
Resumo:
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with supplements A and B. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q >= 1, r + s >= 1 and u, v is an element of N*, to provide that X is isomorphic to Y, whenever these spaces satisfy the following decomposition scheme A(u) similar to X(P) circle plus Y(q) B(v) similar to X(r) circle plus Y(s). Namely, Phi = (p - u)(s - v) - (q + u)(r + v) is different from zero and Phi divides p + q and r + s. These sextuples are called Cantor-Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1) indicates the well-known Pelczynski`s decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder-Bernstein problem become evident.
Resumo:
In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
The paper establishes the existence and uniqueness of asymptotically almost automorphic mild solution to an abstract partial neutral integro-differential equation with unbounded delay. An example is given to illustrate our results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We establish the existence of mild solutions for a class of impulsive second-order partial neutral functional differential equations with infinite delay in a Banach space. (C) 2009 Published by Elsevier Ltd
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.
Resumo:
It is known that retarded functional differential equations can be regarded as Banach-space-valued generalized ordinary differential equations (GODEs). In this paper, some stability concepts for retarded functional differential equations are introduced and they are discussed using known stability results for GODEs. Then the equivalence of the different concepts of stabilities considered here are proved and converse Lyapunov theorems for a very wide class of retarded functional differential equations are obtained by means of the correspondence of this class of equations with GODEs.
Resumo:
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation.