49 resultados para BINUCLEAR PALLADIUM
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.
Resumo:
An ultrasound-assisted synthesis of functionalized symmetrical biaryls with electron-withdrawing or electron-donating substituents is described and illustrated by the palladium-catalyzed detelluration of 1,2-diarylditellanes. This procedure offers easy access to symmetrical biaryls in short reaction time and the products are achieved in good to excellent yields. (c) 2009 Published by Elsevier Ltd.
Resumo:
The high efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates 3 with 5-iodo-1,3-dioxin-4-ones 2a-b in water as only solvent in the presence of n-Bu(4)NOH as base is reported. The respective 5-aryl-1,3-dioxin-4-ones 4a-n were obtained in good to excellent yields. The catalyst system provides high efficiency at low load using electronically diverse coupling partners. The obtained 2,2,6-trimethyl-5-aryl-1,3-dioxin-4-ones were transformed into corresponding alpha-aryl-beta-ketoesters 6 by reaction with an alcohol in the absence of solvent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The palladium-catalyzed cross-coupling reaction of potassium alkynyltrifluoroborates with a chemoenzymatically derived deoxyconduritol is described. Six new compounds were synthesized in moderate to good yields. The alkynyl cross-coupling reaction can be effected using 10 mol% of Pd(PPh(3))(4) as Catalyst in toluene-H(2)O in the presence Of Cs(2)CO(3) as the inorganic base. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An ultrasound-assisted synthesis of symmetrical biaryls with electron-withdrawing or -donating substituents is described and illustrated by palladium-catalyzed homocoupling reaction of aryl tellurides. This procedure offers easy access to biaryls in short reaction time, and the products are achieved in good to excellent yields.
Resumo:
The Suzuki-Miyaura cross-coupling reaction of a hydroxylated vinyl bromide obtained by a chemoenzymatic approach with a diverse range of potassium organotrifluoroborates has been accomplished catalyzed by Pd(PPh(3))(4) in satisfactory yields. A variety of functional groups are tolerated in the nucleophilic partner. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Described herein is a one-pot synthesis of a,p-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence. Functionalized terminal allylic alcohols are treated with m-CPBA Under mild reaction conditions to obtain the alpha,beta-epoxy ketones. The main benefit of this approach is that the epoxidation of the terminal double bond and the oxidation of the secondary alcohol occured in the same reaction under mild reactions and both electron-donating and electron-withdrawing functionalities are tolerated in the reaction sequence. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An ultrasound-assisted synthesis of functionalized 1,3-enyne scaffolds is described and illustrated by palladium-catalyzed cross-coupling of potassium alkynyltrifluoroborate salts and alpha-styrylbutyltellurides. This procedure offers easy access to 1,3-enyne architecture that contains aliphatic and aromatic groups in good to excellent yields.
Resumo:
An expeditious synthesis of alpha-aryl- and alpha-alkynylcyclo-hexenones is described and illustrated by palladium-catalyzed cross-coupling reaction of cyclic alpha-iodoenones with potassium aryltrifluoroborate salts. This procedure offers easy access to alpha-arylated and alkynylated cyclohexenones functionalized with electrondonor and -acceptor substituents in good yields.
Resumo:
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved
Resumo:
The catalytic hydrodechlorination (HDC) reaction, which is an attractive abatement process for chlorinated organic wastes, was studied over a magnetically recoverable supported Pd(0) catalyst. We investigated the most favorable reaction conditions under which to obtain the highest substrate conversion rates while preserving the catalyst properties and morphology. Sodium hydroxide, triethylamine and buffered solutions were used as proton scavengers in the HDC of chlorobenzene under mild conditions. It was observed that sodium hydroxide caused corrosion of the silica support, triethylamine in 2-propanol preserved the morphology of the catalyst which could be recycled for up to five successive H DC reactions, and aqueous buffer solutions preserved the catalyst morphology and the catalytic activity for up to four successive HDC reactions. The use of buffer solutions to neutralize the HCl formed during the HDC reaction is an interesting, less aggressive, alternative approach to HDC reactions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Complexes [Zn(2)(HL(1))(2)(CH(3)COO)(2)] (1) and [Zn(2)(L(2))(2)] (2) were synthesized with salicylaldehyde semicarbazone (H(2)L(1)) and salicylaldehyde-4-chlorobenzoyl hydrazone (H(2)LASSBio-1064, H(2)L(2)), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn(2)(HL(2))(2)(Cl)(2)] (3) in 1:9 DMSO:acetone crystals of [Zn(2)(L(2))(2)(H(2)O)(2)]center dot[Zn(2)(L(2))(2)(DMSO)(4)] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Complexes of the type trans-[PdX(2)(isn)(2)] {X = Cl (1), N(3) (2), SCN (3), NCO (4); isn = isonicotinamide} were synthesized and evaluated for in vitro antimycobacterial and antitumor activities. The coordination mode of the isonicotinamide and the pseudohalide ligands was inferred by IR spectroscopy. Single crystal X-ray diffraction determination on 2 showed that coordination geometry around Pd(II) is nearly square planar, with the ligands in a trans configuration. All the compounds demonstrated better in vitro activity against Mycobacterium tuberculosis than isonicotinamide and pyrazinamide. Among the complexes, compound 2 was found to be the most active with MIC of 35.89 mu M. Complexes 1-4 were also screened for their in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
An efficient method for chemoenzymatic dynamic kinetic resolution of selenium-containing chiral amines (organoselenium-1-phenylethanamines) has been developed, leading to the corresponding amides in excellent enantioselectivities and high isolated yields. This one-pot procedure employs two different types of catalysts: Pd on barium sulphate (Pd/BaSO(4)) as racemization catalyst and lipase (CAL-B) as the resolution catalyst. (C) 2009 Elsevier Ltd. All rights reserved.