87 resultados para Adipose-derived regenerative cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was carried out to evaluate the feasibility of autologous adipose derived stem cells (ADSC) transplantation into female rabbits` urethra walls as an alternative to intrinsic urethral regeneration. Inguinal fat pad of 12 New Zealand adult female rabbits were harvested and processed to obtain stromal vascular fraction (SVF). The SVF were platted to isolate ADSC. Before urethral injection, cells were labeled with DiI marker. The urethra wall was injected with 1 x 10(7) autologous cells or saline (sham). The urethra was harvested at 2, 4, and 8 weeks to identify DiI-labeled cells. At 2 and 4 weeks, the ADSCs create a nodule localized in the urethral sub-mucosa. At 8 weeks, the ADSCs spread and integrated with the urethra wall from the initial injection site. This is the first study to demonstrate a successful autologous ADSCs transplantation. It confirms that ADSCs can survive and integrate within the urethral wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In horses, stem cell therapies are a promising tool to the treatment of many injuries, which are common consequences of athletic endeavor, resulting in high morbidity and often compromising the performance. In spite of many advantages, the isolation of stem cells similar to human, from equine adipose tissue, occurred only recently. The aim of this study was to isolate equine adipose tissue-derived progenitor cells (eAT-PC), to characterize their proliferative potential, and to study their differentiation capacity before and after cryopreservation. The cells, isolated from horse adipose tissue, presented similar fibroblast-like cell morphology in vitro. Their proliferation rate was evaluated during 63 days (23 passages) before and after cryopreservation. After the induction of osteogenic differentiation, von Kossa staining and positive immunostaining studies revealed the formation of calcified extracellular matrix confirming the osteogenic potential of these cells. Adipogenic differentiation was induced using two protocols: routine and other one developed by us, while our protocol requires a shorter time (Oil Red O staining revealed significant accumulation of lipid droplets after 7 days). Chondrogenic differentiation was observed after 21 days of induced pellet culture, as evidenced by histological (toluidine blue) and immunohistochemistry studies. Our data demonstrate that eAT-PC can be easily isolated and successfully expanded in vitro while presenting significant proliferating rate. These cells can be maintained undifferentiated in vitro and can efficiently undergo differentiation at least into mesodermal derivates. These eAT-PC properties were preserved even after cryopreservation. Our findings classify eAT-PC as a promising type of progenitor cells that can be applied in different cell therapies in equines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleft lip and palate (CLP), one of the most frequent congenital malformations, affects the alveolar bone in the great majority of the cases, and the reconstruction of this defect still represents a challenge in the rehabilitation of these patients. One of the current most promising strategy to achieve this goal is the use of bone marrow stem cells (BMSC); however, isolation of BMSC or iliac bone, which is still the mostly used graft in the surgical repair of these patients, confers site morbidity to the donor. Therefore, in order to identify a new alternative source of stem cells with osteogenic potential without conferring morbidity to the donor, we have used orbicular oris muscle (OOM) fragments, which are regularly discarded during surgery repair (cheiloplasty) of CLP patients. We obtained cells from OOM fragments of four unrelated CLP patients (CLPMDSC) using previously described preplating technique. These cells, through flow cytometry analysis, were mainly positively marked for five mesenchymal stem cell antigens (CD29, CD90, CD105, SH3, and SH4), while negative for hematopoietic cell markers, CD14, CD34, CD45, and CD117, and for endothelial cell marker, CD31. After induction under appropriate cell culture conditions, these cells were capable to undergo chondrogenic, adipogenic, osteogenic, and skeletal muscle cell differentiation, as evidenced by immunohistochemistry. We also demonstrated that these cells together with a collagen membrane lead to bone tissue reconstruction in a critical-size cranial defects previously induced in non-immunocompromised rats. The presence of human DNA in the new bone was confirmed by PCR with human-specific primers and immunohistochemistry with human nuclei antibodies. In conclusion, we showed that cells from OOM have phenotypic and behavior characteristics similar to other adult stem cells, both in vitro and in vivo. Our findings suggest that these cells represent a promising source of stem cells for alveolar bone grafting treatment, particularly in young CLP patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) have been described as initiators and modulators of the immune response. Recently we have shown a predominant production of interleukin-10 cytokine, low levels of interferon-gamma and inefficient T cell proliferation in patients with severe forms of chromoblastomycosis. Chromoblastomycosis starts with subcutaneous inoculation of Fonsecaea pedrosoi into tissue where DCs are the first line of defence against this microorganism. In the present study, the interaction of F. pedrosoi and DCs obtained from patients with chromoblastomycosis was investigated. Our results showed that DCs from patients exhibited an increased expression of human leucocyte antigen D-related (HLA-DR) and co-stimulatory molecules. In the presence of conidia, the expression of HLA-DR and CD86 was up-regulated by DCs from patients and controls. Finally, we demonstrate the reversal of antigen-specific anergy and a T helper type 1 response mediated by DCs incubated with F. pedrosoi conidea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the short-term (10 months) safety of a single intravitreal injection of autologous bone marrow-derived mononuclear cells in patients with retinitis pigmentosa or cone-rod dystrophy. Methods: A prospective, Phase I, nonrandomized, open-label study including 3 patients with retinitis pigmentosa and 2 patients with cone-rod dystrophy and an Early Treatment Diabetic Retinopathy Study best-corrected visual acuity of 20/200 or worse. Evaluations including best-corrected visual acuity, full-field electroretinography, kinetic visual field (Goldman), fluorescein and indocyanine green angiography, and optical coherence tomography were performed at baseline and 1, 7, 13, 18, 22, and 40 weeks after intravitreal injection of 10 X 10(6) autologous bone marrow-derived mononuclear cells (0.1 mL) into 1 study eye of each patient. Results: No adverse event associated with the injection was observed. A 1-line improvement in best-corrected visual acuity was measured in 4 patients 1 week after injection and was maintained throughout follow-up. Three patients showed undetectable electroretinography responses at all study visits, while 1 patient demonstrated residual responses for dark-adapted standard flash stimulus (a wave amplitude approximately 35 mu V), which remained recordable throughout follow-up, and 1 patient showed a small response (a wave amplitude approximately 20 mu V) recordable only at Weeks 7, 13, 22, and 40. Visual fields showed no reduction (with a Goldman Standard V5e stimulus) for any patient at any visit. No other changes were observed on optical coherence tomography or fluorescein and indocyanine green angiograms. Conclusion: Intravitreal injection of autologous bone marrow-derived mononuclear cells in eyes with advanced retinitis pigmentosa or cone-rod dystrophy was associated with no detectable structural or functional toxicity over a period of 10 months. Further studies are required to investigate the role, if any, of autologous bone marrow-derived mononuclear cell therapy in the management of retinal dystrophies. RETINA 31: 1207-1214, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs). Methods: Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation. Results: Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs). Conclusion: Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many adult tissues, mesenchymal stem cells (MSCs) are closely associated with perivascular niches and coexpress many markers in common with pericytes. The ability of pericytes to act as MSCs, however, remains controversial. By using genetic lineage tracing, we show that some pericytes differentiate into specialized tooth mesenchyme-derived cells-odontoblasts-during tooth growth and in response to damage in vivo. As the pericyte-derived mesenchymal cell contribution to odontoblast differentiation does not account for all cell differentiation, we identify an additional source of cells with MSC-like properties that are stimulated to migrate toward areas of tissue damage and differentiate into odontoblasts. Thus, although pericytes are capable of acting as a source of MSCs and differentiating into cells of mesenchymal origin, they do so alongside other MSCs of a nonpericyte origin. This study identifies a dual origin of MSCs in a single tissue and suggests that the pericyte contribution to MSC-derived mesenchymal cells in any given tissue is variable and possibly dependent on the extent of the vascularity.