10 resultados para 1324
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This letter presents the properties of nMOS junctionless nanowire transistors (JNTs) under cryogenic operation. Experimental results of drain current, subthreshold slope, maximum transconductance at low electric field, and threshold voltage, as well as its variation with temperature, are presented. Unlike in classical devices, the drain current of JNTs decreases when temperature is lowered, although the maximum transconductance increases when the temperature is lowered down to 125 K. An analytical model for the threshold voltage is proposed to explain the influence of nanowire width and doping concentration on its variation with temperature. It is shown that the wider the nanowire or the lower the doping concentration, the higher the threshold voltage variation with temperature.
Resumo:
BACKGROUND: This study evaluated the effect of a potentially probiotic bacteria (Lactobacillus paracasei subsp. paracasei LBC 82), added solely or together with the prebiotic ingredient inulin on instrumental texture attributes and sensory properties of a functional chocolate mousse during storage at 4 +/- 1 degrees C for up to 28 days. RESULTS: The addition of Lactobacillus paracasei resulted in a firmer and more adhesive chocolate mousse. This effect was intensified with the presence of inulin in the synbiotic formulation (5.24 N and -0.956 N, respectively, for firmness and adhesiveness after 28 days of storage) (P < 0.05). L. paracasei population did not vary (P > 0.05) during storage (always between 7.27 and 7.35 log cfu g(-1)), both for the probiotic and the synbiotic mousses. Synbiotic mousse differed from control and probiotic mousses during storage with respect to the color attribute. Moreover, both probiotic and synbiotic mousses presented taste, aroma and texture perceptions which were different from one another and from the control mousse after 14 and 21 days of storage. CONCLUSION: The use of inulin, together with the potentially probiotic strain of Lactobacillus paracasei subsp. paracasei, is advantageous, conferring potentially symbiotic potential to the chocolate mousse, as well as favorable texture and sensory properties. (c) 2008 Society of Chemical Industry.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
Purpose:Video electroencephalography (vEEG) monitoring of patients with unilateral mesial temporal sclerosis (uMTS) may show concordant or discordant seizure onset in relation to magnetic resonance imaging (MRI) evidence of MTS. Contralateral seizure usually leads to an indication of invasive monitoring. Contralateral seizure onset on invasive monitoring may contraindicate surgery. We evaluated long-term outcome after anteromesial temporal lobectomy (AMTL) in a consecutive series of uMTS patients with concordant and discordant vEEG findings, uniformly submitted to AMTL on the MRI evidence of MTS side without invasive monitoring. Methods:We compared surgical outcome of all uMTS patients undergoing vEEG monitoring between January 1999 and April 2005 in our service. Discordant cases were defined by at least one seizure onset contralateral to the MRI evidence of MTS. Good surgical outcome was considered as Engel`s class I. We also evaluated ictal SPECT concordance to ictal EEG and surgical outcome. Results:Fifty-four patients had concordant (C) and 22 had discordant (D) scalp EEG and MRI. Surgical outcome was similar in both groups (C = 74% versus D = 86%). Duration of follow-up was comparable in both groups: C = 56.1 +/- 20.7 months versus D = 59.8 +/- 21.2 months (p = 0.83, nonsignificant). Discordant single-photon emission computed tomography (SPECT) results did not influence surgical outcome. Discussion:Surgical outcome was not influenced by contralateral vEEG seizure onset or contralateral increased flow on ictal SPECT. Although vEEG monitoring should still be performed in these patients, to rule out psychogenic seizures and extratemporal seizure onset, a potentially risky procedure such as invasive monitoring may not only not be indicated in this patient population, but may also lead to patients erroneously being denied surgery.
Resumo:
BACKGROUND: Previous studies have shown positive effects from noninvasive ventilation (NIV) or supplemental oxygen on exercise capacity in patients with COPD. However, the best adjunct for promoting physiologic adaptations to physical training in patients with severe COPD remains to be investigated. METHODS: Twenty-eight patients (mean +/- SD age 68 +/- 7 y) with stable COPD (FEV(1) 34 +/- 9% of predicted) undergoing an exercise training program were randomized to either NIV (n = 14) or supplemental oxygen (n = 14) during group training to maintain peripheral oxygen saturation (S(pO2)) >= 90%. Physical training consisted of treadmill walking (at 70% of maximal speed) 3 times a week, for 6 weeks. Patients were assessed at baseline and after 6 weeks. Assessments included physiological adaptations during incremental exercise testing (ratio of lactate concentration to walk speed, oxygen uptake [(V) over dot(O2)], and dyspnea), exercise tolerance during 6-min walk test, leg fatigue, maximum inspiratory pressure, and health-related quality of life. RESULTS: Two patients in each group dropped out due to COPD exacerbations and lack of exercise program adherence, and 24 completed the training program. Both groups improved 6-min walk distance, symptoms, and health-related quality of life. However, there were significant differences between the NIV and supplemental-oxygen groups in lactate/speed ratio (33% vs -4%), maximum inspiratory pressure (80% vs 23%), 6-min walk distance (122 m vs 47 m), and leg fatigue (25% vs 11%). In addition, changes in S(pO2)/speed, (V) over dot(O2), and dyspnea were greater with NIV than with supplemental-oxygen. CONCLUSIONS: NIV alone is better than supplemental oxygen alone in promoting beneficial physiologic adaptations to physical exercise in patients with severe COPD.
Resumo:
A simple and easy synthesis of ten arylamidoximes from arylnitriles and hydroxylamine is described. The formation of the arylamides has been observed to a much lesser extent in the present work. A new mechanism for the formation of arylamidoximes, as well as arylamides, from arylnitriles and hydroxylamine is suggested. Quantum mechanical calculations have been carried out to support this mechanism. The enthalpy of formation in conjunction with atomic charges of the reactants and intermediates helped to understand more about the generation of the products.
Resumo:
We study the following problem. Given two sequences x and y over a finite alphabet, find a repetition-free longest common subsequence of x and y. We show several algorithmic results, a computational complexity result, and we describe a preliminary experimental study based on the proposed algorithms. We also show that this problem is APX-hard. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of near-IR (NIR) laser power over the Raman spectra of poly(aniline) emeraldine salt (PANIES) and base (PANI-EB) were investigated. The reasons for the existence of several bands from 1324 to 1500 cm-1 in the Raman spectra of poly(aniline) obtained at NIR region were also studied. The bands from 1324 to 1375 cm-` were associated to vC-N of polarons with different conjugation lengths and the bands from 1450 to 1500 cm-1 in Raman spectra of PANI emeraldine and pernigraniline base forms were correlated to vC=N modes associated with quinoid units having different conjugation lengths. The increase of laser power at 1064.0 run causes the deprotonation of PANI-ES and the formation of cross-linking segments having phenazine and/or oxazine rings. For PANI-EB only a small spectral change is observed when the laser power is increased, owing to the low absorption of this form in the NIR region. Copyright (c) 2007 John Wiley & Sons, Ltd.