Repetition-free longest common subsequence


Autoria(s): ADI, Said S.; BRAGA, Marilia D. V.; FERNANDES, Cristina G.; FERREIRA, Carlos E.; MARTINEZ, Fabio Viduani; SAGOT, Marie-France; STEFANES, Marco A.; TJANDRAATMADJA, Christian; WAKABAYASHI, Yoshiko
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We study the following problem. Given two sequences x and y over a finite alphabet, find a repetition-free longest common subsequence of x and y. We show several algorithmic results, a computational complexity result, and we describe a preliminary experimental study based on the proposed algorithms. We also show that this problem is APX-hard. (C) 2009 Elsevier B.V. All rights reserved.

Identificador

DISCRETE APPLIED MATHEMATICS, v.158, n.12, Special Issue, p.1315-1324, 2010

0166-218X

http://producao.usp.br/handle/BDPI/30369

10.1016/j.dam.2009.04.023

http://dx.doi.org/10.1016/j.dam.2009.04.023

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Discrete Applied Mathematics

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Longest common subsequence #APX-hardness #Approximation algorithms #Mathematics, Applied
Tipo

article

proceedings paper

publishedVersion