19 resultados para 1-ALLYL-3-METHYLIMIDAZOLIUM CHLORIDE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The ionic liquid (IL), 1-allyl-3-(1-butyl)imidazolium chloride (AlBuImCl), has been synthesized and its properties determined. Increase in the temperature increased its conductivity and decreased its density, polarity, and viscosity. Microcrystalline cellulose (MCC), dissolves in thisIL by heating at 80 degrees C; this did not affect its degree of polymerization, decreased its index of crystallinity (Ic), and changed in morphology after regeneration. Convenient acylation of MCC was achieved by using 50% excess anhydride at 80 degrees C, for 24 or 48 h for acetic and butyric anhydride, respectively. The composition of the mixed esters depended on the initial ratio of the anhydrides, and their order of addition.
Resumo:
Heterogeneous dynamics within a time range of nanoseconds was investigated by molecular dynamics (MD) simulations of 1 -butyl-3-methylimidazolium chloride ([bmim]Cl). After identifying groups of fast and slow ions, it was shown that the separation between the location of the center of mass and the center of charge of cations, d(CMCC), is a signature of such difference in ionic mobility. The distance d(CMCC) can be used as a signature because it relaxes in the time window of the dynamical heterogeneity. The relationship between the parameter dcmcc and conformations of the side alkyl chain in [bmim] is discussed. Since the relatively slow relaxation of dcmcc is a consequence of coexisting polar and nonpolar domains in the bulk, the MD simulations reveal a subtle interplay between structural and dynamical heterogeneity in ionic liquids.
Resumo:
Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The impetus for the increasing interest in studying surface active ionic liquids (SAILs; ionic liquids with long-chain ""tails"") is the enormous potential for their applications, e.g., in nanotechnology and biomedicine. The progress in these fields rests on understanding the relationship between surfactant structure and solution properties, hence applications. This need has prompted us to extend our previous study on 1-(1-hexadecyl)-3-methylimidazolium chloride to 1-(1-alkyl)-3-methylimidazolium chlorides, with alkyl chains containing 10, 12, and 14 carbons. In addition to investigating relevant micellar properties, we have compared the solution properties of the imidazolium-based surfactants with: 1-(1-alkyl)pyridinium chlorides, and benzyl (2-acylaminoethyl)dimethylammonium chlorides. The former series carries a heterocyclic ring head-group, but does not possess a hydrogen that is as acidic as H2 of the imidazolium ring. The latter series carries an aromatic ring, a quaternary nitrogen and (a hydrogen-bond forming) amide group. The properties of the imidazolium and pyridinium surfactants were determined in the temperature range from 15 to 75 degrees C. The techniques employed were conductivity, isothermal titration calorimetry, and static light scattering. The results showed the important effects of the interactions in the interfacial region on the micellar properties over the temperature range studied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The thermo-solvatochrornic behaviors of 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate, RB; 2,6-dichloro-4-(2,4,6-triphenyloyridinium-1-yl) phenolate, WB; 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2); 2,6-dibromo-4-[(E)-2-(1-n-octylpyridinium-4-yl)ethenyl] phenolate, OcPMBr(2), have been investigated in binary mixtures of the ionic liquid, IL, 1-(1-butyl)-3-methylimidazolium tetrafluorborate, [BuMeIm][BF(4)], and water (W), in the temperature range from 10 to 60 degrees C. Plots of the empirical solvent polarities, ET (probe) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w) showed nonlinear, i.e., nonideal behavior. Solvation by these IL-W mixtures shows the following similarities to that by aqueous aliphatic alcohols: The same solvation model can be conveniently employed to treat the data obtained; it is based on the presence in the system-bulk medium and probe solvation shell of IL, W, and the ""complex"" solvent 1:1 IL-W. The origin of the nonideal solvation behavior appears to be the same, preferential solvation of the probe, in particular by the complex solvent. The strength of association of the IL-W complex, and the polarity of the IL are situated between the corresponding values of aqueous methanol and aqueous ethanol. Temperature increase causes a gradual desolvation of all probes employed. A difference between solvation by IL-W and aqueous alcohols is that probe-solvent hydrophobic interactions appear to play a minor role in case of the former mixture, probably because solvation is dominated by hydrogen-bonding and Coulombic interactions between the ions of the IL and the zwitterionic probes.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Microwave (MW)-assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low-energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1-allyl-3-methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW-assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DS(ethanoate) > DS(propanoate) > DS(butanoate). The values of DS(pentanoate) and DS(hexanoate) were found to be slightly higher than DS(ethanoate). This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate-based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 134-143, 2010
Resumo:
Cadmium chloride complex of 1-furoyl-3-cyclohexylthiourea (CyTu) was prepared and characterized by elemental analysis, IR, and Raman spectroscopy. The structure of the complex was determined by single crystal X-ray methods (space group Bbab, a = 20.918(1), b = 23.532(1), c = 23.571(1) angstrom, = = , Z = 8). Each cadmium has distorted octahedral geometry, coordinated by two chlorides and the thiocarbonyl sulfurs from four CyTu molecules. All the spectroscopic data are consistent with coordination of CyTu by sulfur to cadmium.
Resumo:
Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2-q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1-17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.
Resumo:
This paper describes the structural evolution of Y(0.9)Er(0.1)Al(3)(BO(3))(4) nanopowders using two soft chemistry routes, the sol-gel and the polymeric precursor methods. Differential scanning calorimetry, differential thermal analyses, thermogravimetric analyses, X-ray diffraction, Fourier-transform infrared, and Raman spectroscopy techniques have been used to study the chemical reactions between 700 and 1200 degrees C temperature range. From both methods the Y(0.9)Er(0.1)Al(3)(BO(3))(4) (Er:YAB) solid solution was obtained almost pure when the powdered samples were heat treated at 1150 degrees C. Based on the results, a schematic phase formation diagram of Er:YAB crystalline solid solution was proposed for powders from each method. The Er:YAB solid solution could be optimized by adding a small amount of boron oxide in excess to the Er:YAB nominal composition. The nanoparticles are obtained around 210 nm. Photoluminescence emission spectrum of the Er:YAB nanocrystalline powders was measured on the infrared region and the Stark components of the (4)I(13/2) and (4)I(15/2) levels were determined. Finally, for the first time the Raman spectrum of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline phase is also presented. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper presents the structural characterization of the indan derivative (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxamide, which was unambiguously determined by X-ray diffraction (XRD) to be a racemate (R/S: 50/50) crystallizing in an achiral crystal structure (P2(1)/c, a = 9.3180(1) , b = 7.9070(2) , c = 19.7550(4) , beta = 103.250(1)A degrees, V = 1416.75(5) (3) and Z = 4). The diastereomers are related by the inversion symmetry and linked by H bond forming a dimer. The crystal packing is stabilized by hydrogen bonds, including the classical one responsible for the formation of centrosymmetric dimers, and non-classical ones involving C-H center dot center dot center dot O and C-H center dot center dot center dot pi-aryl interactions. The intra and intermolecular geometry of the title compound is compared to the (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxylic acid one, which also present an achiral crystal structure from racemates (R/S: 50/50). The two indan derivatives crystallize in a very similar unit cell.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
The effect of adding SO(2) on the structure and dynamics of 1-butyl-3-methylimidazolium bromide (BMIBr) was investigated by low-frequency Raman spectroscopy and molecular dynamics (MD) simulations. The MD simulations indicate that the long-range structure of neat BMIBr is disrupted resulting in a liquid with relatively low viscosity and high conductivity, but strong correlation of ionic motion persists in the BMIBr-SO(2) mixture due to ionic pairing. Raman spectra within the 5 < omega < 200 cm(-1) range at low temperature reveal the short-time dynamics, which is consistent with the vibrational density of states calculated by MD simulations. Several time correlation functions calculated by MD simulations give further insights on the structural relaxation of BMIBr-SO(2).
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
Raman spectra of dilute solutions of acetonitrile in ionic liquids reveal the characteristic features of ionic liquids` polarity. This is accomplished by investigating the Raman bandshape of the nu (CN) band, corresponding to the CN stretching mode of CH(3)CN, which is a very sensitive probe of the local environment. The amphiphilic nature of the CH(3)CN molecule allows us to observe the effect of electron pair acceptor and electron pair donor characteristics on ionic liquids. It has been found that the overall polarity of nine different ionic liquids based on 1-alkyl-3-methylimidazolium cations is more dependent on the anion than cation. The observed wavenumber shift of the nu (CN) band of CH(3)CN in ionic liquids containing alkylsulfate anions agrees with the significant different values previously measured for the dielectric constant of these ionic liquids. The conclusions obtained from the analysis of the nu (CN) band were corroborated by the analysis of the symmetric nu(1) (CD(3)) stretching mode of deuterated acetonitrile in different ionic liquids. Copyright (C) 2010 John Wiley & Sons, Ltd.