141 resultados para metal-organic framework (MOF)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the thermal annealing process, the number of layer and electrochemical process effect in the optical response quality of Bragg and microcavity devices that were applied as organic solvent sensors. These devices have been obtained by using porous silicon (PS) technology. The optical characterization of the Bragg reflector, before annealing, showed a broad photonic band-gap structure with blue shifted and narrowed after annealing process. The electrochemical process used to obtain the PS-based device imposes the limit in the number of layers because of the chemical dissolution effect. The interface roughness minimizations in the devices have been achieved by using the double electrochemical cell setup. The microcavity devices showed to have a good sensibility for organic solvent detection. The thermal annealed device showed better sensibility feature and this result was attributed to passivation of the surface devices. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was carried out to evaluate and compare 11 organic honey samples and six non organic honey samples, respectively, harvested from islands of the triple frontier (Sao Paulo, Parana and Mato Grosso do Sul states) and from the state of Parana, Brazil. The samples were studied for the presence of coliforms from 35 degrees C, to 45 degrees C and the enumeration of moulds and yeast, a minimum of 1.9 x 10(2) and a maximum of 1.1 x 10(3) CFU/g were observed in organic honey and a minimum of 1.8 x 10(1) and a maximum of 2.5 x 10(2) CFU/g were in non organic honey. In this studied region, the organic honey presented a microbiological quality inferior to the non organic honey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown rot, caused by Monilinia fructicola, is the most widespread disease for organic peach production systems in Brazil. The objective of this study was to determine the favorable periods for latent infection by M. fructicola in organic systems. The field experiment was carried out during 2006, 2007 and 2008 using the cultivar Aurora. After thinning fruits were bagged using white paraffin bags, and the treatments were performed by removing the bags and exposing the fruit for four days to the natural infection during each of seven fruit stages from pit hardening to harvest. Throughout the entire growing season, the conidial density and the weather variables were measured and related to the disease incidence using multiple regression analyses. At the fourth day after harvest in each season, the cumulative disease incidence was assessed, and it ranged from 40 to 98%. The incidence of brown rot on fruit that were exposed during the embryo growing stage was lower than that of unbagged fruit throughout the entire season in 2006 and 2008. The relative humidity and the conidia density were significantly correlated to disease incidence. Based on our results, M. fructicola can infect peaches during any stage of fruit development, and control of the disease must be revised to account for organic peach production systems. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, Sao Paulo State) and from three Spanish salt marshes (Betanzos Ria and Corrubedo Natural Parks, Galicia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The chemical variation was larger in SOM from the Spanish marshes than in the SOM of the Brazilian mangroves, possibly because the marshes included sites with both tidal and nontidal variation, whereas the mangrove forest underwent just tidal variation. Thus, plant-derived organic matter was better preserved under permanently anoxic environments. Moreover, given the low number of studied profiles and sedimentary-vegetation sequences in both areas, depth trends remain unclear. The chemical data also allow distinction between the contributions of woody and nonwoody vegetation inputs. Soil organic matter decomposition was found to cause: (i) a decrease in lignin contents and a relative increase in aliphatics; (ii) an increase in short-chain aliphatics at the expense of longer ones; (iii) a loss of odd-over-even dominance in alkanes and alkenes; and (iv) an increase in microbial products, including proteins, sterols, short-chain fatty acids, and alkanes. Pyrolysis-gas chromatography/mass spectrometry is a useful tool to study the behavior and composition of SOM in wetland environments such as mangroves and salt marshes. Additional profiles need to be studied for each vegetation type, however, to improve the interpretability of the chemical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust and accurate regional estimates of C storage in soils are currently an important research topic because of ongoing debate about human-induced changes in the terrestrial C cycle. Widely available geoprocessing tools were applied to estimate native soil organic C (SOC) stocks of Rio Grande do Sul state in southern Brazil to a depth of 30 cm from previously sampled soil pedons under undisturbed vegetation. The study used a statewide comprehensive soil survey comprising a small-scale soil map, a climate map, and a soil pedon database. Soil organic C stocks under native vegetation were calculated with two different approaches: the Tier 1 method of the Intergovernmental Panel on Climate Change (IPCC) and a refined method based on actual field measurements derived from soil profile data. Highest SOC stocks occurred in Neossolos Quartzarenico hidromorfico (Aquents), Organossolos Tiomorficos (Hemists), Latossolos Brunos (Udox), and Vertissolos Ebanicos (Uderts) soil classes. Before human use of soils, most C was stored in the Latossolos Vermelhos (Udox) and Neossolos Regoliticos (Orthents), which occupy a large area of Rio Grande do Sul. Generally, IPCC default reference SOC stocks compared well with SOC stocks calculated from soil pedons. The total SOC stock of Rio Grande do Sul was estimated at 1510.3 Tg C (5.8 kg C m(-2)) by the IPPC method and 1597.5 +/- 363.9 Tg C (7.4 +/- 1.9 kg C m(-2)) calculated from soil pedons. The SOC digital map and SOC database developed in this study provide crucial background information for state-level contemporary assessment of C stocks and soil C sequestration programs and initiatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enantioselective metal-mediated addition of allylic bromides to carbonyl compounds was achieved in the presence of the inexpensive and easily accessible carbohydrates saccharose and beta-cyclodextrin. The desired products were obtained in moderate to excellent yields and with up to 93% enantiomeric excess. (C) 2008 Elsevier Ltd. All rights reserved.