105 resultados para Hamiltonian formalism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider an integrable Hamiltonian system generated by the resonant normal form in order to study a particular mechanism of tunneling. We isolated near doublets of energy corresponding to rotation tori of the classical dynamics counterpart and the degeneracies breakdown is attributed to rotation-rotation tunneling. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian manifold, Omega subset of Man open subset whose closure is homeomorphic to an annulus. We prove that if a,Omega is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in starting orthogonally to one connected component of a,Omega and arriving orthogonally onto the other one. Using the results given in Giamb et al. (Adv Differ Equ 10:931-960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giamb et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290-337, 2010).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are inluded as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various significant anti-HCV and cytotoxic sesquiterpene lactones (SLs) have been characterized. In this work, the chemometric tool Principal Component Analysis (PCA) was applied to two sets of SLs and the variance of the biological activity was explored. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. The calculations were performed using VolSurf program. For anti-HCV activity, PC1 (First Principal Component) explained 30.3% and PC2 (Second Principal Component) explained 26.5% of matrix total variance, while for cytotoxic activity, PC1 explained 30.9% and PC2 explained 15.6% of the total variance. The formalism employed generated good exploratory and predictive results and we identified some structural features, for both sets, important to the suitable biological activity and pharmacokinetic profile.