117 resultados para Subset
Resumo:
In this paper we consider a dissipative damped wave equation with nonautonomous damping of the form u(tt) + beta(t)u(t) - Delta u + f(u) (1) in a bounded smooth domain Omega subset of R(n) with Dirichlet boundary conditions, where f is a dissipative smooth nonlinearity and the damping beta : R -> (0, infinity) is a suitable function. We prove, if (1) has finitely many equilibria, that all global bounded solutions of (1) are backwards and forwards asymptotic to equilibria. Thus, we give a class of examples of nonautonomous evolution processes for which the structure of the pullback attractors is well understood. That complements the results of [Carvalho & Langa, 2009] on characterization of attractors, where it was shown that a small nonautonomous perturbation of an autonomous gradient-like evolution process is also gradient-like. Note that the evolution process associated to (1) is not a small nonautonomous perturbation of any autonomous gradient-like evolution processes. Moreover, we are also able to prove that the pullback attractor for (1) is also a forwards attractor and that the rate of attraction is exponential.
Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Resumo:
This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.
Resumo:
In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We use an inequality due to Bochnak and Lojasiewicz, which follows from the Curve Selection Lemma of real algebraic geometry in order to prove that, given a C(r) function f : U subset of R(m) -> R, we have lim(y -> xy is an element of crit(f)) vertical bar f(y) - f(x)vertical bar/vertical bar y - x vertical bar(r) = 0, for all x is an element of crit(f)` boolean AND U, where crit( f) = {x is an element of U vertical bar df ( x) = 0}. This shows that the so-called Morse decomposition of the critical set, used in the classical proof of the Morse-Sard theorem, is not necessary: the conclusion of the Morse decomposition lemma holds for the whole critical set. We use this result to give a simple proof of the classical Morse-Sard theorem ( with sharp differentiability assumptions).
Resumo:
Let X be a compact Hausdorff space, phi: X -> S(n) a continuous map into the n-sphere S(n) that induces a nonzero homomorphism phi*: H(n)(S(n); Z(p)) -> H(n)(X; Z(p)), Y a k-dimensional CW-complex and f: X -> a continuous map. Let G a finite group which acts freely on S`. Suppose that H subset of G is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set A(phi)(f, H, G) of (H, G)-coincidence points of f relative to phi.
Resumo:
In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u(t) - div(p(x)del u) + lambda u =f(u) in a bounded smooth domain ohm subset of R `` with Dirichlet boundary conditions when the diffusion coefficient p becomes large in a subregion ohm(0) which is interior to the physical domain ohm. We prove, under suitable assumptions, that the family of attractors behave upper and lower semicontinuously as the diffusion blows up in ohm(0). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Inspired by the theory of semigroups of growth a, we construct an evolution process of growth alpha. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that. under natural assumptions. a reasonable concept of solution can be given to Such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Holder continuous functions and to a parabolic problem in a domain Omega subset of R(n) with a one dimensional handle.
Resumo:
Public genealogical databases are becoming increasingly populated with historical data and records of the current population`s ancestors. As this increasing amount of available information is used to link individuals to their ancestors, the resulting trees become deeper and more dense, which justifies the need for using organized, space-efficient layouts to display the data. Existing layouts are often only able to show a small subset of the data at a time. As a result, it is easy to become lost when navigating through the data or to lose sight of the overall tree structure. On the contrary, leaving space for unknown ancestors allows one to better understand the tree`s structure, but leaving this space becomes expensive and allows fewer generations to be displayed at a time. In this work, we propose that the H-tree based layout be used in genealogical software to display ancestral trees. We will show that this layout presents an increase in the number of displayable generations, provides a nicely arranged, symmetrical, intuitive and organized fractal structure, increases the user`s ability to understand and navigate through the data, and accounts for the visualization requirements necessary for displaying such trees. Finally, user-study results indicate potential for user acceptance of the new layout.
Resumo:
Let f : U subset of R(2) -> R(3) be a representative of a finitely determined map germ f : (R(2), 0) -> (R(3), 0). Consider the curve obtained as the intersection of the image of the mapping f with a sufficiently small sphere s(epsilon)(2) centered at the origin in R(3), call this curve the associated doodle of the map germ f. For a large class of map germs the associated doodle has many transversal self-intersections. The topological classification of such map germs is considered from the point of view of the associated doodles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The paper focusses on the existence of higher open book structures defined by real map germs psi : (R(m), 0) -> (R(p), 0) such that Sing psi boolean AND psi(-1)(0) subset of {0}. A general existence criterion is proved, with view to weighted-homogeneous maps.
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present a constructive argument to demonstrate the universality of the sudden death of entanglement in the case of two non-interacting qubits, each of which generically coupled to independent Markovian environments at zero temperature. Conditions for the occurrence of the abrupt disappearance of entanglement are determined and, most importantly, rigourously shown to be almost always satisfied: Dynamical models for which the sudden death of entanglement does not occur are seen to form a highly idealized zero-measure subset within the set of all possible quantum dynamics.
Resumo:
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.