ON NONSYMMETRIC THEOREMS FOR (H, G)-COINCIDENCES


Autoria(s): MATTOS, Denise de; SANTOS, Edivaldo L. dos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Let X be a compact Hausdorff space, phi: X -> S(n) a continuous map into the n-sphere S(n) that induces a nonzero homomorphism phi*: H(n)(S(n); Z(p)) -> H(n)(X; Z(p)), Y a k-dimensional CW-complex and f: X -> a continuous map. Let G a finite group which acts freely on S`. Suppose that H subset of G is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set A(phi)(f, H, G) of (H, G)-coincidence points of f relative to phi.

FAPESP of Brazil[04/10229-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v.33, n.1, p.105-119, 2009

1230-3429

http://producao.usp.br/handle/BDPI/28854

http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-33-1.html

Idioma(s)

eng

Publicador

JULIUSZ SCHAUDER CTR NONLINEAR STUDIES

TORUN

Relação

Topological Methods in Nonlinear Analysis

Direitos

closedAccess

Copyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES

Palavras-Chave #Borsuk-Ulam theorem #Z(p)-index #(H, G)-coincidence #free actions #MAPS #COINCIDENCE #COMPLEXES #SPHERES #Mathematics
Tipo

article

original article

publishedVersion