ON NONSYMMETRIC THEOREMS FOR (H, G)-COINCIDENCES
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let X be a compact Hausdorff space, phi: X -> S(n) a continuous map into the n-sphere S(n) that induces a nonzero homomorphism phi*: H(n)(S(n); Z(p)) -> H(n)(X; Z(p)), Y a k-dimensional CW-complex and f: X -> a continuous map. Let G a finite group which acts freely on S`. Suppose that H subset of G is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set A(phi)(f, H, G) of (H, G)-coincidence points of f relative to phi. FAPESP of Brazil[04/10229-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v.33, n.1, p.105-119, 2009 1230-3429 http://producao.usp.br/handle/BDPI/28854 http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-33-1.html |
Idioma(s) |
eng |
Publicador |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES TORUN |
Relação |
Topological Methods in Nonlinear Analysis |
Direitos |
closedAccess Copyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
Palavras-Chave | #Borsuk-Ulam theorem #Z(p)-index #(H, G)-coincidence #free actions #MAPS #COINCIDENCE #COMPLEXES #SPHERES #Mathematics |
Tipo |
article original article publishedVersion |