The curve selection lemma and the Morse-Sard theorem
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We use an inequality due to Bochnak and Lojasiewicz, which follows from the Curve Selection Lemma of real algebraic geometry in order to prove that, given a C(r) function f : U subset of R(m) -> R, we have lim(y -> xy is an element of crit(f)) vertical bar f(y) - f(x)vertical bar/vertical bar y - x vertical bar(r) = 0, for all x is an element of crit(f)` boolean AND U, where crit( f) = {x is an element of U vertical bar df ( x) = 0}. This shows that the so-called Morse decomposition of the critical set, used in the classical proof of the Morse-Sard theorem, is not necessary: the conclusion of the Morse decomposition lemma holds for the whole critical set. We use this result to give a simple proof of the classical Morse-Sard theorem ( with sharp differentiability assumptions). CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
MANUSCRIPTA MATHEMATICA, v.129, n.3, p.401-408, 2009 0025-2611 http://producao.usp.br/handle/BDPI/28846 10.1007/s00229-009-0275-2 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Manuscripta Mathematica |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Mathematics |
Tipo |
article original article publishedVersion |