51 resultados para Least squares method
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
Resumo:
Moving-least-squares (MLS) surfaces undergoing large deformations need periodic regeneration of the point set (point-set resampling) so as to keep the point-set density quasi-uniform. Previous work by the authors dealt with algebraic MLS surfaces, and proposed a resampling strategy based on defining the new points at the intersections of the MLS surface with a suitable set of rays. That strategy has very low memory requirements and is easy to parallelize. In this article new resampling strategies with reduced CPU-time cost are explored. The basic idea is to choose as set of rays the lines of a regular, Cartesian grid, and to fully exploit this grid: as data structure for search queries, as spatial structure for traversing the surface in a continuation-like algorithm, and also as approximation grid for an interpolated version of the MLS surface. It is shown that in this way a very simple and compact resampling technique is obtained, which cuts the resampling cost by half with affordable memory requirements.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
The glycolytic enzyme glyceraldehyde-3 -phosphate dehydrogenase (GAPDH) is as an attractive target for the development of novel antitrypanosomatid agents. In the present work, comparative molecular field analysis and comparative molecular similarity index analysis were conducted on a large series of selective inhibitors of trypanosomatid GAPDH. Four statistically significant models were obtained (r(2) > 0.90 and q(2) > 0.70), indicating their predictive ability for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results. Molecular modeling studies provided further insight into the structural basis for selective inhibition of trypanosomatid GAPDH.
Resumo:
When missing data occur in studies designed to compare the accuracy of diagnostic tests, a common, though naive, practice is to base the comparison of sensitivity, specificity, as well as of positive and negative predictive values on some subset of the data that fits into methods implemented in standard statistical packages. Such methods are usually valid only under the strong missing completely at random (MCAR) assumption and may generate biased and less precise estimates. We review some models that use the dependence structure of the completely observed cases to incorporate the information of the partially categorized observations into the analysis and show how they may be fitted via a two-stage hybrid process involving maximum likelihood in the first stage and weighted least squares in the second. We indicate how computational subroutines written in R may be used to fit the proposed models and illustrate the different analysis strategies with observational data collected to compare the accuracy of three distinct non-invasive diagnostic methods for endometriosis. The results indicate that even when the MCAR assumption is plausible, the naive partial analyses should be avoided.
Resumo:
This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.