Comparing diagnostic tests with missing data


Autoria(s): POLETO, Frederico Z.; SINGER, Julio M.; PAULINO, Carlos Daniel
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

When missing data occur in studies designed to compare the accuracy of diagnostic tests, a common, though naive, practice is to base the comparison of sensitivity, specificity, as well as of positive and negative predictive values on some subset of the data that fits into methods implemented in standard statistical packages. Such methods are usually valid only under the strong missing completely at random (MCAR) assumption and may generate biased and less precise estimates. We review some models that use the dependence structure of the completely observed cases to incorporate the information of the partially categorized observations into the analysis and show how they may be fitted via a two-stage hybrid process involving maximum likelihood in the first stage and weighted least squares in the second. We indicate how computational subroutines written in R may be used to fit the proposed models and illustrate the different analysis strategies with observational data collected to compare the accuracy of three distinct non-invasive diagnostic methods for endometriosis. The results indicate that even when the MCAR assumption is plausible, the naive partial analyses should be avoided.

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação para a Ciência e a Tecnologia de Portugal (FCT)

Fundacao para a Ciencia e Tecnologia (FCT) through the research centres CEMAT-IST and CEAUL-FCUL, Portugal

Identificador

JOURNAL OF APPLIED STATISTICS, v.38, n.6, p.1207-1222, 2011

0266-4763

http://producao.usp.br/handle/BDPI/30450

10.1080/02664763.2010.491860

http://dx.doi.org/10.1080/02664763.2010.491860

Idioma(s)

eng

Publicador

ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD

Relação

Journal of Applied Statistics

Direitos

restrictedAccess

Copyright ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD

Palavras-Chave #missing categorical data #negative predictive value #positive predictive value #sensitivity #specificity #CATEGORICAL-DATA ANALYSIS #2 SCREENING-TESTS #LOG LINEAR-MODEL #VERIFICATION BIAS #SENSITIVITY-ANALYSIS #LOGISTIC-REGRESSION #INCOMPLETE-DATA #REFLECTIONS #ESTIMATORS #ACCURACIES #Statistics & Probability
Tipo

article

original article

publishedVersion