90 resultados para Ambient oxigen concentration
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
This study analyzes the relationship between extracellular purines and pain perception in humans. Cerebrospinal fluid (CSF) levels of purines and their metabolites were compared between patients displaying acute and/or chronic pain syndromes and control subjects. The CSF levels of IMP, inosine, guanosine and uric acid were significantly increased in the chronic pain group and correlated with pain severity (P<0.05). Patients displaying both chronic and acute pain presented similar changes in the CSF purines concentration (P<0.05). However, in the acute pain group, only CSF inosine and uric acid levels were significantly increased (P<0.05). These findings suggest that purines, in special inosine, guanosine and uric acid, are associated with the spinal mechanisms underlying nociception. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Background: The antiatherogenic functions of high density lipoprotein (HDL-C) include its role in reverse cholesterol transport, but to what extent the concentration of HDL-C interferes with the whole-body cholesterol metabolism is unknown. Therefore, we measured markers of body cholesterol synthesis (desmosterol and lathosterol) and of intestinal cholesterol absorption (campesterol and beta-sitosterol) in healthy subjects that differ according to their plasma HDL-C concentrations. Methods: Healthy participants presented either low HDL-C (<40 mg/dl, n = 33,17 male and 16 female) or high HDL-C (>60 mg/dl, n = 33, 17 male and 16 female), BMI <30 kg/m(2), were paired according to age and gender, without secondary factors that might interfere with their plasma lipid concentrations. Plasma concentrations of non-cholesterol sterols were measured by the combined GC-MS analysis. Results: Plasma desmosterol did not differ between the two groups; however, as compared with the high HDL-C participants, the low HDL-C participants presented higher concentration of lathosterol and lower concentration of the intestinal cholesterol absorption markers campesterol and beta-sitosterol. Conclusion: Plasma concentrations of HDL, and not the activities of LCAT and CETP that regulate the reverse cholesterol transport system, correlate with plasma sterol markers of intestinal cholesterol absorption directly, and of cholesterol synthesis reciprocally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n = 56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24 h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM <= 2.5 mu g/m(3)), nitrogen dioxide (NO(2)), black smoke (BS), humidity and temperature in both the environment and inside the chambers were measured daily. Filters cleared 100% of BS and 97% of PM inside the F chamber. The arteriole wall of the lungs of mice from NF chamber had an increased ETAr expression (p <= 0.042) concomitant to a decrease in the lumen/wall ratio (p = 0.02) on the early days of exposure, compared to controls. They also presented a progressive increment of inflammatory influx in the peribronchiolar area during the study (p = 0.04) and decrement of the eNOS expression on the 45th day of exposure in both vascular layers (p <= 0.03). We found that after 14 days of exposure, the ambient levels of air pollutants in Sao Paulo induced vasoconstriction that was associated with an increase in ETAr expression. These vascular results do not appear to be coupled to the progressive inflammatory influx in lung tissue, suggesting a down-regulation of vasoconstrictive mechanisms through an imbalance in the cytokines network. It is likely that these responses are protective measures that decrease tissue damage brought about by continuous exposure to air pollutants. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: To determine the impact of menopause on lipid transfer from donor lipoproteins to high-density lipoproteins (HDLs)-a process that is related to the protective function of HDL-and the size of HDL particles. Method: Plasma from 22 prernenopausal and 18 postmenopausal nonobese, normolipidemic women paired for age (40-50 years) was incubated in an artificial nanoemulsion labeled with radioactive lipids. Then the HDL fraction was assessed for radioactivity; the percentage of radioactive lipids transferred from the nanoemulsion to HDL was determined; and the size of HDL particles was measured by laser light scattering. Results: There were no differences between the 2 groups in serum concentration of HDL cholesterol (61 12 mg/dL vs 61 +/- 14 mg/dL) or apolipoprotein A(1) (1.5 +/- 0.3 g/L vs 1.5 +/- 0.2 g/L); lipid transfer to HDL; or size of HDL particles (8.8 +/- 0.8 vs 9.0 +/- 0.5 nm). Conclusion: Menopause was not found to affect HDL cholesterol plasma concentration, lipid transfer to HDL, or size of HDL particles in normolipidemic nonobese women. (C) 2008 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd.All rights reserved.
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the Sao Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the Sao Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM(2.5) and PM(10)) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM(2.5) and PM(10) fractions were collected using a dichotomous sampler (10 L min(-1), 24 h) with Teflon (TM) filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM(2.5) in 2009) was 0.99 ng m(-3) (NHV) and 3.3 ng m(-3) (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m(-3) and 0.12 ng m(-3) for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaP(eq)), where the overall toxicity of a PAR mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaP(eq) median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m(-3) and 1.2-1.4 ng m(-3) for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m(-3), related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern. (C) 2010 Published by Elsevier Ltd.
Resumo:
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 mu g/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Resumo:
Objective: To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. Design: Animal model. Setting: Academic institution. Animal(S): Six-week-old, superovulated mice. Intervention(s): Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. Main Outcome Measure(S): Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). Result(S): Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. Conclusion(S): Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo. (Fertil Steril (R) 2009;92:1725-35. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Millions of people worldwide are affected by anthropogenic air pollution derived from the combustion of fossil fuels. In this work, we tested the effects of fetal, lactation and post-weaning ambient air pollution exposure on total homocysteine (tHcy) concentrations and on a downstream pathway element, the plasma cysteine (Cys) concentration. Two similar exposure chambers (polluted and filtered chamber) were located near an area with heavy traffic in Sao Paulo, Brazil, and male Swiss mice were housed there from the pre-natal period until 3 months of age. Groups during fetal, lactation and adult periods of exposure were apportioned, and tHcy and Cys plasma concentrations were assessed when the animals were 3 months old. In our study, both the tHcy and Cys concentrations were decreased in groups that spent their final stage of life in polluted chambers, suggesting recent alterations in tHcy and Cys concentrations due to air pollution exposure. The possible relationship of these data with cardiovascular dysfunction is still a matter of controversy in animals; nevertheless, epigenetic mechanisms emerge as a possible issue to consider in the investigation of the link between air pollution and Hcy measurement. (C) 2009 Elsevier Inc. All rights reserved.