136 resultados para Candida nivariensis
Resumo:
The correlation between the microdilution (MD), Etest (R) (ET), and disk diffusion (DD) methods was determined for amphotericin B, itraconazole and fluconazole. The minimal inhibitory concentration (MIC) of those antifungal agents was established for a total of 70 Candida spp. isolates from colonization and infection. The species distribution was: Candida albicans (n = 27), C. tropicalis (n = 17), C. glabrata (n = 16), C. parapsilosis (n = 8), and C. lusitaniae (n = 2). Non-Candida albicans Candida species showed higher MICs for the three antifungal agents when compared with C. albicans isolates. The overall concordance (based on the MIC value obtained within two dilutions) between the ET and the MD method was 83% for amphotericin B, 63% for itraconazole, and 64% for fluconazole. Considering the breakpoint, the agreement between the DD and MD methods was 71% for itraconazole and 67% for fluconazole. The DD zone diameters are highly reproducible and correlate well with the MD method, making agar-based methods a viable alternative to MD for susceptibility testing. However, data on agar-based tests for itraconazole and amphotericin B are yet scarce. Thus, further research must still be carded out to ensure the standardization to other antifungal agents. J. Clin. Lab. Anal. 23:324-330, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We show that RsAFP2, a plant defensin that interacts with fungal glucosylceramides, is active against Candida albicans, inhibits to a lesser extent other Candida species, and is nontoxic to mammalian cells. Moreover, glucosylceramide levels in Candida species correlate with RsAFP2 sensitivity. We found RsAFP2 prophylactically effective against murine candidiasis.
Resumo:
The phenotypic pressure exerted by non-steroidal anti-inflammatory drugs (NSAIDs) on autochthonous and pathogenic microbiota remains sparsely known. In this study, we investigated if some NSAIDs increment or diminish the secretion of aspartyl-proteases (Sap) by Candida albicans grown under different phenotypes and oxygen availability using a set of SAP knock-out mutants and other set for genes (EFG1 and CPH1) that codify transcription factors involved in filamentation and protease secretion. Preconditioned cells were grown under planktonic and biofilm phenotypes, in normoxia and anoxia, in the presence of plasma concentrations of acetylsalicylic acid, diclofenac, indomethacin, nimesulide, piroxicam, ibuprofen, and acetaminophen. For diclofenac, indomethacin, nimesulide, and piroxicam the secretion rates of Sap by SAP1-6, EFG1. and CPH1 mutants were similar or, even, inferior to parental wildtype strain. This suggests that neither Sap 1-6 isoenzymes nor Efg1/Cph1 pathways may be entirely responsible for protease release when exposed to these NSAIDs. Ibuprofen and acetaminophen enhanced Sap secretion rates in three environmental conditions (normoxic biofilm, normoxic planktonic and anoxic planktonic). In other hand, aspirin seems to reduce the Sap-related pathogenic behavior of candidal biofilms. Modulation of Sap activity may occur according to candidal phenotypic state, oxygen availability, and type of NSAID to which the cells are exposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study describes the association of curcumin with light emitting diode (LED) for the inactivation of Candida albicans. Suspensions of Candida were treated with nine curcumin concentrations and exposed to LED at different fluences. The protocol that showed the best outcomes for Candida inactivation was selected to evaluate the effect of the preirradiation time (PIT) on photodynamic therapy (PDT) effectiveness, the uptake of curcumin by C. albicans cells and the possible involvement of singlet oxygen in the photodynamic action. Curcumin-mediated PDT was also assessed against biofilms. In addition to the microbiological experiments, similar protocols were tested on a macrophage cell line and the effect was evaluated by Methyltetrazolium assay (MTT) and SEM analysis. The optical properties of curcumin were investigated as a function of illumination fluence. When compared with the control group, a statistically significant reduction in C. albicans viability was observed after PDT (P < 0.05), for both planktonic and biofilm cultures. Photodynamic effect was greatly increased with the presence of curcumin in the surrounding media and the PIT of 20 min improved PDT effectiveness against biofilms. Although PDT was phototoxic to macrophages, the therapy was more effective in inactivating the yeast cell than the defense cell. The spectral changes showed a high photobleaching rate of curcumin.
Resumo:
P>Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem (R) (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem (R) concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 degrees C), colonies were counted (CFU ml-1). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l-1 of Photogem (R) and illuminated at 37.5 J cm-2. The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
Resumo:
This study was addressed to investigate the composition and antifungal activity of essential oils from leaves of Piperaceae species (Piper aduncum, Piper amalago, Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper gaudichaudianum, Piper solmsianum, Piper regnellii, Piper tuberculatum, Piper umbelata and Peperomia obtusifolia) against Candida albicans, C. parapsilosis, C. krusei and Cryptococcus neoformans. The essential oils from P. aduncum, P. gaudichaudianum and P. solmsianum showed the highest antifungal activity against Cryptococcus neoformans with the MIC of 62.5, 62.5 and 3.9 mg.mL-1, respectively. The oil from P. gaudichaudianum showed activity against C. krusei with MIC of 31.25 mg.mL-1.
Resumo:
Lipase B from Candida antarctica can be directly immobilized onto functionalized superparamagnetic nanoparticles, preserving its enzymatic activity in the enantioselective transesterification of secondary alcohols, with excellent results in terms of enantiomeric discrimination. The immobilized enzyme can be easily recovered with a magnet, allowing its reuse with negligible loss of activity. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
An efficient method for chemoenzymatic dynamic kinetic resolution of selenium-containing chiral amines (organoselenium-1-phenylethanamines) has been developed, leading to the corresponding amides in excellent enantioselectivities and high isolated yields. This one-pot procedure employs two different types of catalysts: Pd on barium sulphate (Pd/BaSO(4)) as racemization catalyst and lipase (CAL-B) as the resolution catalyst. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The kinetic resolution of (+/-)-iodophenylethanols was carried out using lipase from Candida antarctica and in some cases the enantiomeric excesses were high (up to >98%). Enantiomerically enriched (S)-iodophenylethanols produced by the enzymatic resolution process were used in the synthesis of chiral biphenyl compounds by the Suzuki reaction with good yields (63-65%). (C) 2010 Elsevier Ltd. All rights reserved.
Antifungal activity of tri- and tetra-thioureido amino derivatives against different Candida species
Resumo:
The in vitro antifungal activity of six thioureido substituted amines (P1-P6) was evaluated against Candida species, including Candida albicans, C. glabrata, C. krusei and C. parapsilosis. These tri- and tetra-thioureido amino derivatives with different methylation levels were synthesised through easy synthetic routes to evaluate their antifungal properties against Candida species. Among all studied derivatives, the tri-(2-thioureido-ethyl)-amine (P1) was the most active compound inhibiting C. albicans and C. glabrata at a concentration of 0.49 mu g ml(-1); P3, the N,N `,N ``,N ```-hexamethyl-derivative, also showed inhibitory activity against C. albicans and C. glabrata, but in higher concentrations (250 mu g ml(-1)). The N,N `,N ``,N ```-tetramethylated amine (P5) only inhibited the growth of C. glabrata, but its corresponding N,N `,N ``,N ```-octamethyl derivative (P6) was also active against C. glabrata (125 mu g ml(-1)) and it was the only compound active against C. parapsilosis. P2 and P4 showed no significant antifungal activity. The structure-activity relationship of the thioureido-substituted derivatives indicates that the molecular branching and the alkylation levels can influence the antifungal activity. This study demonstrated that thioureido derivatives exhibited significant antifungal activity against Candida species and that they can be considered as a very promising bioactive lead compound to develop novel antifungal agents.
Resumo:
OBJECTIVE: This study evaluated the efficacy of NitrAdineTM-based disinfecting cleaning tablets for complete denture, in terms of denture biofilm removal and antimicrobial action. MATERIAL AND METHODS: Forty complete denture wearers (14 men and 26 women) with a mean age of 62.3±9.0 years were randomly assigned to two groups and were instructed to clean their dentures according to two methods: brushing (control) - 3 times a day with denture brush and tap water following meals; brushing and immersion (Experimental) - brushing the denture 3 times a day with denture brush and tap water following meals and immersion of the denture in NitrAdineTM-based denture tablets (Medical InterporousTM). Each method was used for 21 days. Denture biofilm was disclosed by a 1% neutral red solution and quantified by means of digital photos taken from the internal surface before and after the use of the product. Microbiological assessment was conducted to quantify Candida sp. RESULTS: An independent t-test revealed a significant lower biofilm percentage for the experimental group (4.7, 95% CI 2.4 to 7.9) in comparison with the control group (mean 37.5, 95% CI 28.2 to 48.1) (t38=7.996, p<0.001). A significant reduction of yeast colony forming units could be found after treatment with Medical InterporousTM denture tablets as compared to the control group (Mann-Whitney test, Z=1.90; p<0.05). CONCLUSION: The present findings suggest that NitrAdineTM-based disinfecting cleaning tablets are efficient in removal of denture biofilm. In addition, a clear antimicrobial action was demonstrated. Therefore, they should be recommended as a routine denture maintenance method for the prevention of the development of microbial biofilm induced denture stomatitis.
Resumo:
The purpose of this work was to evaluate the influence of Protease Inhibitors (PI) on the occurrence of oral candidiasis in 111 HIV+ patients under PI therapy (Group A). The controls consisted of 56 patients that were not using PI drugs (Group B) and 26 patients that were not using any drugs for HIV therapy (Group C). The patient's cd4 cell counts were taken in account for the correlations. One hundred and ninety three patients were evaluated. The PI did not affect the prevalence of oral candidiasis (p = 0.158) or the frequency of C. albicans isolates (p = 0.133). Patients with lower cd4 cell counts showed a higher frequency of C. albicans isolates (p = 0.046) and a greater occurrence of oral candidiasis (p = 0.036).
Resumo:
Os cuidados gerais relativos ao paciente submetido ao transplante de medula óssea (TMO) incluem avaliações odontológicas rotineiras, as quais devem estar inseridas em um contexto multiprofissional. A cavidade oral constitui um sítio propício a infecções com grande potencial de desenvolvimento de bacteremia, sendo que lesões infecciosas devem ser previamente tratadas e controladas pelo cirurgião-dentista. O objetivo desta revisão é discutir questões em destaque na literatura nacional e internacional referentes aos quadros inflamatórios e infecciosos orais de importância para o paciente transplantado de medula óssea, tanto os predisponentes a complicações durante o transplante, quanto os que ocorrem durante e após a terapia mielossupressora. Destaca-se na literatura a doença periodontal avançada, a qual constitui um quadro infeccioso crônico que deve ser evitado ou controlado durante o TMO, principalmente devido à presença de S. viridans. Os fatores de risco para mucosite oral (OM), doença do enxerto contra o hospedeiro (DECH) e xerostomia ainda não estão definidos, principalmente para OM e DECH. São citadas na literatura alternativas promissoras de tratamento para OM, tais como crioterapia, administração de fatores de crescimento e laserterapia. O risco aumentado de cárie é controverso e, dentre as lesões fúngicas e virais, destacam-se as infecções orais e de orofaringe por Candida e pela família de herpesvírus, de importância clínica considerável. Em pacientes pediátricos são relevantes as alterações craniofaciais e dentárias, decorrentes principalmente da radioterapia.
Resumo:
The phytochemical investigation of ethanolic extracts from leaves, branches and stems of D. bipinnatum afforded the steroids β-sitosterol, stigmasterol, campesterol, sitostenone and sitosterol-3-O-β-D-glycopyranoside, along with two cycloartane triterpenes: cycloeucalenol and 24-methylenecycloartenol. The antimicrobial activity of the extracts was evaluated against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6623), Pseudomonas aeruginosa (ATCC 15442), Micrococcus luteus (ATCC 9341) and Candida albicans (ATCC 10231). The extracts of the leaves and branches showed moderate activity against Candida albicans. The extract of the branches was active against Micrococcus luteus. This is the first report on the phytochemical study of D. bipinnatum.