50 resultados para Associative Classifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have revisited photoassociative ionization (PAI) in a cold sample of Na atmos. A two-color experiment was performed ina magneto-optical trap through the addition of aprobe laser. The observation of a marked change in the PAI rate for a definite frequency range can be attributed to the influence of repuisive levels and a possible avoided crossing between long-range molecular levels. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let l bar right arrow l(theta) denote an involution on L and extend it linearly to the loop ring RL. An element alpha is an element of RL is symmetric if alpha(theta) = alpha and skew-symmetric if alpha(theta) = -alpha. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or theta is the canonical involution on L, and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.