36 resultados para shape displays
Resumo:
In this paper, we describe the blue photoluminescence (PL) observed in the multi-component oxosalt phosphor GdVO(4)center dot Ce(3+). Different doping concentrations (0.25-1 mol%) and heat treatment (900-1100 degrees C) were used to evaluate which conditions would lead to the most suitable blue phosphor for optimal display performance. The cerium doping concentration influences the profile of the emission spectrum (broad peak at 412 nm under UV excitation at 330 nm), as reflected on the values of chromaticity coordinates. On the basis of luminescent properties, we can conclude that, among the phosphors prepared in this work the most adequate for a blue display is the one obtained via the combustion method using glycine as fuel, a 0.50 mol% cerium doping concentration, and heat treatment at 1000 degrees C.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
Chorea-acanthocytosis (ChAc) is an uncommon autosomal recessive disorder due to mutations of the VPS13A gene, which encodes for the membrane protein chorein. ChAc presents with progressive limb and orobuccal chorea, but there is often a marked dysexecutive syndrome. ChAc may first present with neuropsychiatric disturbance such as obsessive-compulsive disorder (OCD), suggesting a particular role for disruption to striatal structures involved in non-motor frontostriatal loops, such as the head of the caudate nucleus. Two previous studies have suggested a marked reduction in volume in the caudate nucleus and putamen, but did not examine morphometric change. We investigated morphometric change in 13 patients with genetically or biochemically confirmed ChAc and 26 age- and gender-matched controls. Subjects underwent magnetic resonance imaging and manual segmentation of the caudate nucleus and putamen, and shape analysis using a non-parametric spherical harmonic technique. Both structures showed significant and marked reductions in volume compared with controls, with reduction greatest in the caudate nucleus. Both structures showed significant shape differences, particularly in the head of the caudate nucleus. No significant correlation was shown between duration of illness and striatal volume or shape, suggesting that much structural change may have already taken place at the time of symptom onset. Our results suggest that striatal neuron loss may occur early in the disease process, and follows a dorsal-ventral gradient that may correlate with early neuropsychiatric and cognitive presentations of the disease. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Different components of complex integrated systems may be specialized for different functions, and thus the selective pressures acting on the system as a whole may be conflicting and can ultimately constrain organismal performance and evolution. The vertebrate cranial system is one of the most striking examples of a complex system with several possible functions, being associated to activities as different as locomotion, prey capture, display and defensive behaviours. Therefore, selective pressures on the cranial system as a whole are possibly complex and may be conflicting. The present study focuses on the influence of potentially conflicting selective pressures (diet vs. locomotion) on the evolution of head shape in Tropidurinae lizards. For example, the expected adaptations leading to flat heads and bodies in species living on vertical structures may conflict with the need for improved bite performance associated with the inclusion of hard or tough prey into the diet, a common phenomenon in Tropidurinae lizards. Body size and six variables describing head shape were quantified in preserved specimens of 23 species, and information on diet and substrate usage was obtained from the literature. No phylogenetic signal was observed in the morphological data at any branch length tested, suggesting adaptive evolution of head shape in Tropidurinae. This pattern was confirmed by both factor analysis and independent contrast analysis, which suggested adaptive co-variation between the head shape and the inclusion of hard prey into the diet. In contrast to our expectations, habitat use did not constrain or drive head shape evolution in the group.
Resumo:
Antarctic biodiversity is evolutionarily complex, reflecting the extreme ambient conditions. Therefore, Antarctic organisms exhibit sophisticated adaptations in all organization levels, including organs, tissues, and cells. Since red blood cells (RBCs) travel through the vertebrates blood delivering O(2) to all tissues and organs and purging the unwanted CO(2), they represent an interesting model to investigate biological adaptations. We have used atomic force microscopy (AFM) to compare the shape and size of RBCs of the Pygoscelid penguins. A total of 18 landmarks were measured in AFM images. When analyzed individually, the parameters were not capable of discriminating the RBCs of each species. However, the simultaneous use of multiple parameters discriminated (74%) among the RBCs. In addition, the use of RBC measurements was sufficient to hierarchically cluster the species in accordance to other common and reliable phylogenetic strategies. In light of these results, the use of RBC characters could effectively benefit taxonomic inferences.
Resumo:
Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
Resumo:
Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
The synthesis and self-assembly of tetragonal phase-containing L1(0)-Fe(55)Pt(45) nanorods with high coercive field is described. The experimental procedure resulted in a tetragonal/cubic phase ratio close to 1:1 for the as-synthesized nanoparticles. Using different surfactant/solvent proportions in the process allowed control of particle morphology from nanospheres to nanowires. Monodisperse nanorods with lengths of 60 +/- 5 nm and diameters of 2-3 nm were self-assembled in a perpendicular oriented array onto a substrate surface using hexadecylamine as organic spacer. Magnetic alignment and properties assigned, respectively, to the shape anisotropy and the tetragonal phase suggest that the self-assembled materials are a strong candidate to solve the problem of random magnetic alignment observed in FePt nanospheres leading to applications in ultrahigh magnetic recording (UHMR) systems capable of achieving a performance of the order of terabits/in(2).
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
PURPOSE: Apert syndrome is a rare type I acrocephalosyndactyly syndrome characterized by craniosynostosis, severe syndactyly of the hands and feet, and dysmorphic facial features. Presents autosomal dominant inheritance assigned to mutations in the fibroblast growth factor receptors gene. The oral cavity of Apert patients includes a reduction in the size of the maxilla, tooth crowding, anterior open-bite of the maxilla, impacted teeth, delayed eruption, ectopic eruption, supernumerary teeth, and thick gingiva. The mandible usually is within normal size and shape, and simulates a pseudoprognathism. CASE DESCRIPTION: A female patient, 13 years old, with diagnosis of Apert syndrome, attended a dental radiology clinic. The clinical signs were occular anomalies, dysmorphic facial features, syndactyly and oral features observed clinically and radiographically. The patient was referred to a specialized center of clinical care for patients with special needs. CONCLUSION: Because of the multiple alterations in patients with Apert syndrome, a multidisciplinary approach, including dentists and neurosurgeons, plastic surgeons, ophthalmologists and geneticists, is essential for a successful planning and treatment.
Resumo:
OBJETIVO: definir valores cefalométricos esqueléticos e dentários para adolescentes brasileiros com Padrão Face Longa. MÉTODOS: a amostra foi constituída de telerradiografias em norma lateral de 30 pacientes com Face Longa, sendo 17 do sexo feminino e 13 do masculino; e 30 pacientes face Padrão I, 15 do sexo masculino e 15 do feminino, no estágio de dentadura permanente durante a adolescência. As características do Padrão Face Longa foram definidas clinicamente, pela análise facial. As seguintes grandezas cefalométricas foram avaliadas: (1) Comportamento sagital das bases apicais (SNA, SNB, ANB, NAP, Co-A, Co-Gn); (2) Comportamento vertical das bases apicais (SN.PP, SN.PM, ângulo goníaco, AFAT, AFAI, AFAM, AFP, AFATperp, AFAIperp); (3) Comportamento dentoalveolar (1-PP, 6-PP, 1-PM, 6-PM, 1.PP, IMPA); e (4) Proporção entre as alturas faciais (AFAIPerp/AFATPerp, AFAI/AFAT, AFAM/AFAI). RESULTADOS E CONCLUSÕES: o erro vertical na Face Longa concentra-se no terço inferior. A maxila apresenta uma maior altura dentoalveolar e a mandíbula, com morfologia mais vertical, mostra maior rotação no sentido horário. Essas características morfológicas e espaciais acarretam alterações sagitais e verticais no esqueleto e alterações verticais dentoalveolares. No sentido sagital, os ângulos de convexidade facial estão aumentados. No sentido vertical, as alturas faciais anteriores total e inferior estão aumentadas. O componente dentoalveolar está mais longo.
Resumo:
Para a descrição macro e microscópica das glândulas mamárias foram utilizadas três fêmeas de Mão Pelada (Procyon cancrivorus). As amostras das glândulas foram processadas conforme técnicas rotineiras para histologia. As fêmeas estudadas apresentaram 3 pares de glândulas mamárias, sendo um par de glândula mamária abdominal cranial, um par de abdominal caudal e um par de inguinal. As papilas mamárias apresentaram formato pendular, como os canídeos domésticos. Microscopicamente, a glândula mamária apresentou da porção externa para a interna: epiderme (epitélio estratificado pavimentoso queratinizado), derme (tecido conjuntivo frouxo e tecido conjuntivo denso não modelado), fibras musculares lisas e ductos papilíferos que abrem em vários ósteos papilares em formato de "chuveiro". A porção secretora glandular era caracteristicamente túbulo alveolar, com células cuboidais dispostas em camada simples. Os resultados indicam que o conjunto glandular estudado é semelhante ao da cadela (Cannis familiaris) tanto em seu aspecto macroscópico quanto em seu aspecto microscópico, este fato sugere que podemos utilizar o Mão Pelada e o Cão como modelos similares de estudo, para identificação de patologias relacionadas a este sistema.