Improved likelihood inference for the shape parameter in Weibull regression
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, v.78, n.9, p.789-811, 2008 0094-9655 http://producao.usp.br/handle/BDPI/30432 10.1080/00949650701421964 |
Idioma(s) |
eng |
Publicador |
TAYLOR & FRANCIS LTD |
Relação |
Journal of Statistical Computation and Simulation |
Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS LTD |
Palavras-Chave | #censoring #failure time data #likelihood ratio test #maximum likelihood estimator #nuisance parameter #profile likelihood #regression model #Weibull distribution #Computer Science, Interdisciplinary Applications #Statistics & Probability |
Tipo |
article original article publishedVersion |