A complex network-based approach for boundary shape analysis
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) National Council for Scientific and Technological Development, Brazil National Council for Scientific and Technological Development, Brazil[306628/2007-4] FAPESP State of Sao Paulo Research Foundation[2006154367-9] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP State of Sao Paulo Research Foundation[2006/53972-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2006154367-9] FAPESP[2006/53972-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
PATTERN RECOGNITION, v.42, n.1, p.54-67, 2009 0031-3203 http://producao.usp.br/handle/BDPI/29741 10.1016/j.patcog.2008.07.006 |
Idioma(s) |
eng |
Publicador |
PERGAMON-ELSEVIER SCIENCE LTD |
Relação |
Pattern Recognition |
Direitos |
restrictedAccess Copyright PERGAMON-ELSEVIER SCIENCE LTD |
Palavras-Chave | #Shape analysis #Shape recognition #Complex network #Small-world model #IMAGE RETRIEVAL #RECOGNITION #DESCRIPTORS #FOURIER #Computer Science, Artificial Intelligence #Engineering, Electrical & Electronic |
Tipo |
article original article publishedVersion |