29 resultados para STATIONARY-POINTS
Resumo:
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.
Resumo:
In this work we show that, if L is a natural Lagrangian system such that the k-jet of the potential energy ensures it does not have a minimum at the equilibrium and such that its Hessian has rank at least n - 2, then there is an asymptotic trajectory to the associated equilibrium point and so the equilibrium is unstable. This applies, in particular, to analytic potentials with a saddle point and a Hessian with at most 2 null eigenvalues. The result is proven for Lagrangians in a specific form, and we show that the class of Lagrangians we are interested can be taken into this specific form by a subtle change of spatial coordinates. We also consider the extension of this results to systems subjected to gyroscopic forces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic gamma : [0, 1] -> M joining p and U whose endpoints are conjugate along gamma. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.
Resumo:
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.
Resumo:
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.
Resumo:
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.
Resumo:
We study focal points and Maslov index of a horizontal geodesic gamma : I -> M in the total space of a semi-Riemannian submersion pi : M -> B by determining an explicit relation with the corresponding objects along the projected geodesic pi omicron gamma : I -> B in the base space. We use this result to calculate the focal Maslov index of a (spacelike) geodesic in a stationary spacetime which is orthogonal to a timelike Killing vector field.
Resumo:
We prove an estimate on the difference of Maslov indices relative to the choice of two distinct reference Lagrangians of a continuous path in the Lagrangian Grassmannian of a symplectic space. We discuss some applications to the study of conjugate and focal points along a geodesic in a semi-Riemannian manifold.
Resumo:
We extend the renormalization operator introduced in [A. de Carvalho, M. Martens and M. Lyubich. Renormalization in the Henon family, I: universality but non-rigidity. J. Stat. Phys. 121(5/6) (2005), 611-669] from period-doubling Henon-like maps to Henon-like maps with arbitrary stationary combinatorics. We show that the renonnalization picture also holds in this case if the maps are taken to be strongly dissipative. We study infinitely renormalizable maps F and show that they have an invariant Cantor set O on which F acts like a p-adic adding machine for some p > 1. We then show, as for the period-doubling case in the work of de Carvalho, Martens and Lyubich [Renormalization in the Henon family, I: universality but non-rigidity. J. Stat. Phys. 121(5/6) (2005), 611-669], that the sequence of renormalizations has a universal form, but that the invariant Cantor set O is non-rigid. We also show that O cannot possess a continuous invariant line field.
Resumo:
Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.
Resumo:
We report a novel method for calculating flash points of acyclic alkanes from flash point numbers, N(FP), which can be calculated from experimental or calculated boiling point numbers (Y(BP)) with the equation N(FP) = 1.020Y(BP) - 1.083 Flash points (FP) are then determined from the relationship FP(K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 For it data set of 102 linear and branched alkanes, the correlation of literature and predicted flash points has R(2) = 0.985 and an average absolute deviation of 3.38 K. N(FP) values can also be estimated directly from molecular structure to produce an even closer correspondence of literature and predicted FP values. Furthermore, N(FP) values provide a new method to evaluate the reliability of literature flash point data.
Resumo:
Flash points (T(FP)) of organic compounds are calculated from their flash point numbers, N(FP), with the relationship T(FP) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901. In turn, the N(FP) values can be predicted from boiling point numbers (Y(BP)) and functional group counts with the equation N(FP) = 0.974Y(BP) + Sigma(i)n(i)G(i) + 0.095 where G(i) is a functional group-specific contribution to the value of N(FP) and n(i) is the number of such functional groups in the structure. For a data set consisting of 1000 diverse organic compounds, the average absolute deviation between reported and predicted flash points was less than 2.5 K.
Resumo:
The enantiomers of sulfoxide proton pump inhibitors - omeprazole, lansoprazole, rabeprazole and Ro 18-5364 - were enantiomerically separated by liquid chromatography at multimilligram scale on a poly saccharide-based chiral stationary phase using normal and polar organic conditions as mobile phase. The values of the recovery and production rate were significant for each enantiomer; better results were achieved using a solid-phase injection system. However, this system was applied just for the enantionteric separation of omeprazole to demonstrate the applicability of this injection mode at milligram scale. The chiroptical characterization of the compounds was performed using a polarimeter and a circular dichroism detector. The higher enantiomeric purity obtained for the isolated enantiomers suggests that the methods here described should be considered as a simple and rapid way to obtain enantiomeric pure standards for analytical purpose. (C) 2007 Elsevier B.V. All rights reserved.