31 resultados para Monotone likelihood ration property
Resumo:
We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S(NN) = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.
Resumo:
The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we consider a parametric bootstrap scheme to obtain improved critical values and improved p-values for the likelihood ratio test. The numerical results show that the modified tests are more reliable in finite samples than the usual likelihood ratio test. We also present an empirical application. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we deal with the issue of performing accurate testing inference on a scalar parameter of interest in structural errors-in-variables models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as special case. We derive a modified signed likelihood ratio statistic that follows a standard normal distribution with a high degree of accuracy. Our Monte Carlo results show that the modified test is much less size distorted than its unmodified counterpart. An application is presented.
Resumo:
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171-1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605-610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897-916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Likelihood ratio tests can be substantially size distorted in small- and moderate-sized samples. In this paper, we apply Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-321] adjusted likelihood ratio statistic to exponential family nonlinear models. We show that the adjustment term has a simple compact form that can be easily implemented from standard statistical software. The adjusted statistic is approximately distributed as X(2) with high degree of accuracy. It is applicable in wide generality since it allows both the parameter of interest and the nuisance parameter to be vector-valued. Unlike the modified profile likelihood ratio statistic obtained from Cox and Reid [Cox, D.R., Reid, N., 1987. Parameter orthogonality and approximate conditional inference. journal of the Royal Statistical Society B49, 1-39], the adjusted statistic proposed here does not require an orthogonal parameterization. Numerical comparison of likelihood-based tests of varying dispersion favors the test we propose and a Bartlett-corrected version of the modified profile likelihood ratio test recently obtained by Cysneiros and Ferrari [Cysneiros, A.H.M.A., Ferrari, S.L.P., 2006. An improved likelihood ratio test for varying dispersion in exponential family nonlinear models. Statistics and Probability Letters 76 (3), 255-265]. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both l(1) and l(infinity) It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c(0) is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.
Resumo:
We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
We propose a likelihood ratio test ( LRT) with Bartlett correction in order to identify Granger causality between sets of time series gene expression data. The performance of the proposed test is compared to a previously published bootstrapbased approach. LRT is shown to be significantly faster and statistically powerful even within non- Normal distributions. An R package named gGranger containing an implementation for both Granger causality identification tests is also provided.
Resumo:
The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [