Improved likelihood inference in Birnbaum-Saunders regressions


Autoria(s): LEMONTE, Artur J.; FERRARI, Silvia L. P.; CRIBARI-NETO, Francisco
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

The Birnbaum-Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we consider a parametric bootstrap scheme to obtain improved critical values and improved p-values for the likelihood ratio test. The numerical results show that the modified tests are more reliable in finite samples than the usual likelihood ratio test. We also present an empirical application. (C) 2009 Elsevier B.V. All rights reserved.

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq (Brazil)

Identificador

COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.54, n.5, p.1307-1316, 2010

0167-9473

http://producao.usp.br/handle/BDPI/30467

10.1016/j.csda.2009.11.017

http://dx.doi.org/10.1016/j.csda.2009.11.017

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Computational Statistics & Data Analysis

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #INFLUENCE DIAGNOSTICS #MODELS #FAMILY #Computer Science, Interdisciplinary Applications #Statistics & Probability
Tipo

article

original article

publishedVersion