87 resultados para IONIZING-RADIATION
Resumo:
Neodymium doped and undoped aluminum oxide samples were obtained using two different techniques: Pechini and sol-gel. Fine grained powders were produced using both procedures, which were analyzed using Scanning Electron Microscopy (SEM) and Thermo-Stimulated Luminescence (TSL). Results showed that neodymium ions incorporation is responsible for the creation of two new TSL peaks (125 and 265 degrees C) and, also, for the enhancement of the intrinsic TSL peak at 190 degrees C. An explanation was proposed for these observations. SEM gave the dimensions of the clusters produced by each method, showing that those obtained by Pechini are smaller than the ones produced by sol-gel; it can also explain the higher emission supplied by the first one. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Soybean is an important Brazilian agricultural commodity that contains a high concentration of isoflavones. Many studies showed that isoflavones are active in the prevention of many human diseases. However, the correct processing techniques used to prepare the soy foodstuffs are important to maintain the active forms. The objective of this study was to evaluate the effect of gamma irradiation on the isoflavone contents of the defatted soybean flour when compared with soybean molasses, a derivative from the soybean food production. After extracting phenolic compounds with methanol aqueous solution (80%), isoflavones were detected by reverse-phase high-performance liquid chromatography/diode-array detector. The radiation doses of 2 and 5 kGy presented a small effect on the isoflavones content of defatted soy flour. Samples irradiated at 50 kGy showed lower isoflavone contents. The observed reduction in the concentration of isoflavones-daidzein, glycitein and genistein-induced by gamma radiation in soy molasses was not significant in defatted soy flour, thus suggesting that isoflavones in defatted soy flour were not eliminated by gamma radiation at rates up to 50 kGy.
Resumo:
Uranium is a natural radioactive metallic element; its effect on the organism is cumulative, and chronic exposure to this element can induce carcinogenesis. Three cities of the Amazon region-Monte Alegre, Prainha, and Alenquer-in North Brazil, are located in one of the largest uranium mineralization areas of the world. Radon is a radioactive gas, part of uranium decay series and readily diffuses through rock. In Monte Alegre, most of the houses are built of rocks removed from the Earth`s crust in the forest, where the uranium reserves lie. The objective of the present work is to determine the presence or absence of genotoxicity and risk of carcinogenesis induced by natural exposure to uranium and radon in the populations of these three cities. The frequency of micronuclei (MN) and chromosomal aberrations (CA) showed no statistically significant differences between the control population and the three study populations (P > 0.05). MN was also analyzed using the fluorescence in situ hybridization (FISH) technique, with a centromere-specific probe. No clastogenic and/or aneugenic effects were found in the populations. Using FISH analysis, other carcinogenesis biomarkers were analyzed, but neither the presence of the IGH/BCL2 translocation nor an amplification of the MYC gene and 22q21 region was detected. Clastogenicity and DNA damage were also not found in the populations analyzed using the alkaline comet assay. The mitotic index showed no cytotoxicity in the analyzed individuals` lymphocytes. Once we do not have data concerning radiation doses from other sources, such as cosmic rays, potassium, thorium, or anthropogenic sources, it is hard to determine if uranium emissions in this geographic region where our study population lives are too low to cause significant DNA damage. Regardless, genetic analyses suggest that the radiation in our study area is not high enough to induce DNA alterations or to interfere with mitotic apparatus formation. It is also possible that damages caused by radiation doses undergo cellular repair.
Resumo:
Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmA(ATM) loss of function caused synthetic lethality when combined with mutation in UvsB(ATR). Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkA(CHK1) and chkB(CHK2) genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for Delta atmA, Delta uvsB, Delta chkA, and Delta chkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimE(APCI), ankA(WEE1) and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents.
Resumo:
Toxoplasma gondii is an obligate intracellular parasite that infects a variety of mammals and birds. T. gondii also causes human toxoplasmosis; although toxoplasmosis is generally a benign disease, ocular, congenital or reactivated disease is associated with high numbers of disabled people. Infection occurs orally through the ingestion of meat containing cysts or by the intake of food or water contaminated with oocysts. Although the immune system responds to acute infection and mediates the clearance of tachyzoites, parasite cysts persist for the lifetime of the host in tissues such as the eye, muscle, and CNS. However, T. gondii RH strain tachyzoites irradiated with 255 Gy do not cause residual infection and induce the same immunity as a natural infection. To assess the humoral response in BALB/c and C57BL/6J mice immunized with irradiated tachyzoites either by oral gavage (p.o.) or intraperitoneal (i.p.) injection, we analyzed total and high-affinity IgG and IgA antibodies in the serum. High levels of antigen-specific IgG were detected in the serum of parenterally immunized mice, with lower levels in mice immunized via the oral route. However, most serum antibodies exhibited low affinity for antigen in both mice strain. We also found antigen specific IgA antibodies in the stools of the mice, especially in orally immunized BALB/c mice. Examination of bone marrow and spleen cells demonstrated that both groups of immunized mice clearly produced specific lgG, at levels comparable to chronic infection, suggesting the generation of IgG specific memory. Next, we challenged i.p. or p.o. immunized mice with cysts from ME49. VEG or P strains of T. gondii. Oral immunization resulted in partial protection as compared to challenged naive mice: these findings were more evident in highly pathogenic ME49 strain challenge. Additionally, we found that while mucosal IgA was important for protection against infection, antigen-specific IgG antibodies were involved with protection against disease and disease pathogenesis. Most antigen responsive cells in culture produced specific high-affinity IgG after immunization, diverse of the findings in serum IgG or from cells after infection, which produced low proportion of high-avidity IgG. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Impaired DNA repair efficiency in systematic lupus erythematosus (SLE) patients has been reported ill some studies, mainly regarding the repair of oxidative damage, but little is known about repair kinetics towards primarily single-stranded DNA breaks. In the present study, we aimed to investigate: (a) the efficiency of SLE peripheral blood leucocytes in repairing DNA damage induced by ionizing radiation and (b) the association of DNA repair gene (XRCC1 Arg399Gln, XRCC3 Thr241Met and XRCC4 Ile401Thr) polymorphisms in SLE patients, considering the whole group, or stratified sub-groups according to clinical and laboratory features. A total of 163 SLE patients and 125 healthy control were studied. The kinetics of DNA strand break repair was evaluated by the comet assay, and genotyping for DNA repair genes was performed by PCR-RFLP. Compared with controls. SLE leucocytes exhibited decreased efficiency of DNA repair evaluated at 30 min following irradiation. A significant association with DNA repair gene polymorphisms was not observed for the whole group of SLE patients; however, the XRCC1Arg399Gln polymorphism was associated with the presence of anti-dsDNA antibody. The concomitance of two DNA repair polymorphic sites was associated with the presence of neuropsychiatric manifestations and antiphospholipid antibody syndrome. Taken together, these results indicated that SLE leucocytes repair less efficiently the radiation-induced DNA damage, and DNA repair polymorphic sites may predispose to the development of particular clinical and laboratory features. Lupus (2008) 17, 988-995.
Resumo:
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Resumo:
The successful treatment of paediatric malignancies by multimodal therapy has improved outcomes for children with cancer, especially those with acute lymphoblastic leukaemia (ALL). Second malignant neoplasms, however, represent a serious complication after treatment. Depending on dosage, 2-12% of patients treated with topoisomerase II inhibitors and/or alkylating agents develop treatment-related acute myeloid leukaemia characterized by translocations at 11q23. Our goal was to study MLL rearrangements in peripheral lymphocytes using cytogenetic and molecular methods in order to evaluate the late effects of cancer therapy in patients previously treated for childhood ALL. Chromosomal rearrangements at 11q23 were analysed in cytogenetic preparations from 49 long-term ALL survivors and 49 control individuals. Patients were subdivided depending on the inclusion or omission of topoisomerase II inhibitors (VP-16 and/or VM-26) in their treatment protocol. The statistical analysis showed significant (P = 0.007) differences between the frequency of translocations observed for the groups of patients and controls. These differences were also significant (P = 0.006) when the groups of patients (independent of the inclusion of topoisomerase II inhibitors) and controls were compared (P = 0.006). The frequencies of extra signals, however, did not differ between groups of patients and controls. Several MLL translocations were detected and identified by inverse polymerase chain reaction, followed by cloning and sequencing. Thirty-five patients (81%) presented putative translocations; among those, 91% corresponded with t(4;11) (q21;q23), while the other 9% corresponded with t(11;X), t(8;11)(q23;q23) and t(11;16). Our results indicate an increase in MLL aberrations in childhood ALL survivors years after completion of therapy. The higher frequency in this cohort might be associated with therapy using anti-tumoural drugs, independent of the inclusion of topoisomerase II inhibitors. Even though the biological significance of these rearrangements needs further investigation, they demonstrate a degree of genome instability, indicating the relevance of cytogenetic and molecular studies during the follow-up of patients in complete clinical remission.
Resumo:
Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
Resumo:
In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH#3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.
Resumo:
A Li(2)O-B(2)O(3)-Al(2)O(3) glass system, un-doped and doped with LiF, and/or TiO(2) was synthesized by the fusion method and its physical properties were investigated by thermoluminescence (TL), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), atomic force microscopy (AFM) and differential thermal analysis (DTA). The samples were subjected to gamma-rays from a colbalt-60 ((60)Co) source. These techniques provided evidence of LiF and LiF doped with Ti crystal formation in the glass system. A TL glow peak at about 433 K was sensitive to (60)Co gamma-rays and showed good linearity with doses and consequently could be used to quantify radiation doses. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
The single cell gel eletrophoresis or the comet assay was established in the freshwater snail Biomphalaria glabrata. For detecting DNA damage in circulating hemocytes, adult snails were irradiated with single doses of 2.5. 5, 10 and 20 Gy of Co-60 gamma radiation. Genotoxic effect of ionizing radiation was detected at all doses as a dose-related increase in DNA migration. Comet assay in B. glabrata demonstrated to be a simple, fast and reliable tool in the evaluation of genotoxic effects of environmental mutagens. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.