276 resultados para Free phase plume
Resumo:
The possible ways for glycine oligopeptide formation in gas phase, both in the extended P-strand like conformation and folded 2(7)-ribbon like conformations are analyzed using quantum chemical calculations. We focus on the sequential formation of peptide bond through upgradation of the immediate lower order molecule and observe the consequences in other related processes like oligoglycine formation through simultaneous peptide linkage of n glycine monomers and interchange of molecular conformation through peptide linkage. A comparison is made between the structures and binding energies obtained for both conformers. All binding energies are increased by the zero-point energy contribution. The role of electron correlation effects is briefly analyzed. The folded 2(7)-ribbon-like conformations in vacuo are found to be more stable in comparison to the extended structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
The concept of sequential injection chromatography (SIC) was exploited to automate the fluorimetric determination of amino acids after pre-column derivatization with ophthaldialdehyde (OPA) in presence of 2-mercaptoethanol (2MCE) using a reverse phase monolithic C(18) stationary phase. The method is low-priced and based on five steps of isocratic elutions. The first step employs the mixture methanol: tetrahydrofuran: 10 mmol L(-1) phosphate buffer (pH 7.2) at the volumetric ratio of 8:1:91; the other steps use methanol: 10 mmol L-1 phosphate buffer (pH 7.2) at volumetric ratios of 20:80, 35:65, SO:SO and 65:35. At a flow rate of 10 mu L s(-1) a 25 mm long-column was able to separate aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), glycine (Gly), threonine (Thr), citruline (Ctr), arginine (Arg), alanine (Ala), tyrosine (Tyr), phenylalanine (Phe), ornithine (Orn) and lysine (Lys) with resolution >1.2 as well as methionine (Met) and valine (Val) with resolution of 0.6. Under these conditions isoleucine (Ile) and leucine (Leu) co-eluted. The entire cycle of amino acids derivatization, chromatographic separation and column conditioning at the end of separation lasted 25 min. At a flow rate of 40 mu L s(-1) such time was reduced to 10 min at the cost of resolution worsening for the pairs Ctr/Arg and Orn/Lys. The detection limits varied from 0.092 mu mol L(-1) for Tyr to 0.51 mu mol L(-1) for Orn. The method was successfully applied to the determination of intracellular free amino acids in the green alga Tetraselmis gracilis during a period of seven days of cultivation. Samples spiked with known amounts of amino acids resulted in recoveries between 94 and 112%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011
Resumo:
In this paper, we show that the steady-state free precession sequence can be used to acquire (13)C high-resolution nuclear magnetic resonance spectra and applied to qualitative analysis. The analysis of brucine sample using this sequence with 60 degrees flip angle and time interval between pulses equal to 300 ms (acquisition time, 299.7 ms; recycle delay, 300 ms) resulted in spectrum with twofold enhancement in signal-to-noise ratio, when compared to standard (13)C sequence. This gain was better when a much shorter time interval between pulses (100 ms) was applied. The result obtained was more than fivefold enhancement in signal-to-noise ratio, equivalent to more than 20-fold reduction in total data recording time. However, this short time interval between pulses produces a spectrum with severe phase and truncation anomalies. We demonstrated that these anomalies can be minimized by applying an appropriate apodization function and plotting the spectrum in the magnitude mode.
Resumo:
This in situ study investigated, using scanning electron microscopy, the effect of stimulated saliva on the enamel surface of bovine and human substrates submitted to erosion followed by brushing abrasion immediately or after one hour. During 2 experimental 7-day crossover phases, 9 previously selected volunteers wore intraoral palatal devices, with 12 enamel specimens (6 human and 6 bovine). In the first phase, the volunteers immersed the device for 5 minutes in 150 ml of a cola drink, 4 times a day (8h00, 12h00, 16h00 and 20h00). Immediately after the immersions, no treatment was performed in 4 specimens (ERO), 4 other specimens were immediately brushed (0 min) using a fluoride dentifrice and the device was replaced into the mouth. After 60 min, the other 4 specimens were brushed. In the second phase, the procedures were repeated but, after the immersions, the volunteers stimulated the salivary flow rate by chewing a sugar-free gum for 30 min. Enamel superficial alterations of all specimens were then evaluated using a scanning electron microscope. Enamel prism core dissolution was seen on the surfaces submitted to erosion, while on those submitted to erosion and to abrasion (both at 0 and 60 min) a more homogeneous enamel surface was observed, probably due to the removal of the altered superficial prism layer. For all the other variables - enamel substrate and salivary stimulation -, the microscopic pattern of the enamel specimens was similar.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.
Resumo:
The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.
Resumo:
Development of the positive temperature coefficient of resistivity (PTCR) in Er3+ and Ca2+ co-doped ferroelectric BaTiO3 was studied in this work, with Er3+ being used to act as a donor doping. Irrespective of all the materials showing high densities after sintering at 1200 to 1300 ºC, these revealed insulator at the lowest sintering temperature, changing to semiconducting and PTCR-type materials only when the sintering temperature was further increased. Observations from X-ray diffraction help correlating this effect with phase development in this formulated (Ba,Ca,Er)TiO3 system, considering the formation of initially two separated major (Ba,Ca)TiO3- and minor (Ca,Er)TiO3-based compounds, as a consequence of cation size-induced stress energy effects. Thus, appearance and enhancement here of the semiconducting and PTCR responses towards higher sintering temperatures particularly involve the incorporation of Er3+ into the major phase, rendering finally possible the generation and "percolative-like" migration of electrons throughout the whole material.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Metal-free synthesis of indanes by iodine(III)-mediated ring contraction of 1, 2-dihydronaphthalenes
Resumo:
A metal-free protocol was developed to synthesize indanes by ring contraction of 1, 2-dihydronaphthalenes promoted by PhI(OH)OTs (HTIB or Koser's reagent). This oxidative rearrangement can be performed in several solvents (MeOH, CH3CN, 2 , 2, 2-trifluoroethanol (TFE), 1 , 1, 1, 3, 3, 3-hexafluoroisopropanol (HFIP), and a 1:4 mixture of TFE:CH2Cl2) under mild conditions. The ring contraction diastereoselectively gives functionalized trans-1, 3-disubstituted indanes, which are difficult to obtain in synthetic organic chemistry