38 resultados para Electrochemical capacitance spectroscopy
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.
Resumo:
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.
Resumo:
The deposition and characterization of Se films doped with Pb underpotentially deposited (UPD) ad-atoms was studied in this work. The employed experimental techniques were cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, UV-vis spectroscopy and atomic force microscopy. The initial deposition of Se film by chronoamperometry yielded a thin film composed of approximately 700 layers. The Pb UPD on Se was achieved by chronoamperometry in a potential value previously determined in voltammetric experiments. This deposition yielded a deposition charge of approximately 7.5% of the total one. The film resistance altered from 320 Omega cm(2) for Se to 65 Omega cm(2) for the Se/Pb one. Flat band potential values and number of acceptors and donors were also calculated for both films and the values obtained were + 0.95 and -0.51 V for Se and Se/Pb, respectively. The Se coating presented 1.2 x 10(17) cm(3) acceptors while the Se/Pb one presented 3.2 x 10(17) cm(3) donors. The band gap values for both films were 2.4 eV and 1.9 eV, correspondingly. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine modified carbon nanotube electrode for the quantitative determination of dopamine in 0.2 mol L-1 phosphate buffer contaminated with high concentration of ascorbic acid. The electrode surface was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy which showed a modified surface presenting a charge transfer resistance of 500 Omega, against the 16.46 k Omega value found for the bare glassy carbon surface. A pseudo rate constant value of 5.4 x 10(-4) cm s(-1) for dopamine oxidation was calculated. Voltammetric experiments showed a shift of the peak potential of DA oxidation to less positive value at 390 mV as compared with that of a bare GC electrode at 570 mV. The electrochemical determination of dopamine, in presence of ascorbic acid in concentrations up to 0.1 mol L-1 by differential pulse voltarnmetry, yielded a detection limit as low as 2.56 x 10(-7) mol L-1.
Resumo:
Canonical Monte Carlo simulations for the Au(210)/H(2)O interface, using a force field recently proposed by us, are reported. The results exhibit the main features normally observed in simulations of water molecules in contact with different noble metal surfaces. The calculations also assess the influence of the surface topography on the structural aspects of the adsorbed water and on the distribution of the water molecules in the direction normal to the metal surface plane. The adsorption process is preferential at sites in the first layer of the metal. The analysis of the density profiles and dipole moment distributions points to two predominant orientations. Most of the molecules are adsorbed with the molecular plane parallel to surface, while others adsorb with one of the O-H bonds parallel to the surface and the other bond pointing towards the bulk liquid phase. There is also evidence of hydrogen bond formation between the first and second solvent layers at the interface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Pectin is a natural polymer present in plants and, as all natural polymers has biodegradation properties. Chemically, pectin is a polysaccharide composed of a linear chain of 1 -> 4 linked galacturonic acids, which is esterified with methanol at 80%. The pectin-based gel electrolytes in a transparent film form were obtained by a plasticization process with glycerol and addition of LiClO(4). The films showed good ionic conductivity results, which increased from 10(-5) S/cm for the samples with 37 wt.% of glycerol to 4.7 x 10(-4) S/cm at room temperature for the sample with 68 wt.% of glycerol. The electrochemical behaviors of the samples were studied by electrochemical impedance spectroscopy (EIS), and Nyquist graphs are showed and discussed. The obtained pectin-based samples also presented good adherence to the glass, flexibility, homogeneity (SEM) and transparency (about 70% in the vis) properties. They are good candidates to be applied as gel electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A graphite-polyurethane composite electrode has been used for the determination of furosemide, a antihypertensive drug, in pharmaceutical samples by anodic oxidation. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrooxidation process at +1.0 V vs. SCE over a wide pH range, with the result that no adsorption of analyte or products occurs, unlike at other carbon-based electrode materials. Quantification was carried out using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry. Linear ranges were determined (up to 21 mu mol L-1 with cyclic voltammetry) as well as limits of detection (0.15 mu mol L-1 by differential pulse voltammetry). Four different types of commercial samples were successfully analyzed. Recovery tests were performed which agreed with those obtained by spectrophotometric evaluation. The advantages of this electrode material for repetitive analyzes, due to the fact that no electrode surface renewal is needed owing to the lack of adsorption, are highlighted.
Resumo:
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.
Resumo:
The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to -14000 C cm(-2) in steps of -600 C cm(-2) using -1 A cm(-2) caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: -9 C cm(-2), passed at -1 A cm(-2). This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.
Resumo:
In this paper, a detailed study of the capacitance spectra obtained from Au/doped-polyaniline/Al structures in the frequency domain (0.05 Hz-10 MHz), and at different temperatures (150-340 K) is carried out. The capacitance spectra behavior in semiconductors can be appropriately described by using abrupt cut-off models, since they assume that the electronic gap states that can follow the ac modulation have response times varying rapidly with a certain abscissa, which is dependent on both temperature and frequency. Two models based on the abrupt cut-off concept, formerly developed to describe inorganic semiconductor devices, have been used to analyze the capacitance spectra of devices based on doped polyaniline (PANI), which is a well-known polymeric semiconductor with innumerous potential technological applications. The application of these models allowed the determination of significant parameters, such as Debye length (approximate to 20 nm), position of bulk Fermi level (approximate to 320 meV) and associated density of states (approximate to 2x10(18) eV(-1) cm(-3)), width of the space charge region (approximate to 70 nm), built-in potential (approximate to 780 meV), and the gap states` distribution.
Resumo:
Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
The electrochemical behavior of ISO 5832-9 stainless steel at 37 degrees C in 0.9% NaCl, Ringer Lactate and minimum essential medium (MEM) has been studied, using linear voltammetry, and surface analysis by SEM and EDS. Mechanical and toxicity tests were made. ISO 5832-9 is passivated at corrosion potential (E) and it does not present pitting corrosion on the media studied from to 50 in V above the transpassivation potential (Ei). SEM and EDS analysis have shown that the sample previously immersed in MEM presents a diffirent behavior at 50 in V above El: the manganese oxide inclusions are absent in the surface. E. values and passivation current density values j(pass) changed according to the following. E(corr, RL) < E(corr,NaCl) < E(corr, MEM) and J (MEM) << j(RL) congruent to j(NaCl) The stainless steel was characterized as non toxic in the cytotoxicity assay