21 resultados para Affinely Connected Spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with supplements A and B. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q >= 1, r + s >= 1 and u, v is an element of N*, to provide that X is isomorphic to Y, whenever these spaces satisfy the following decomposition scheme A(u) similar to X(P) circle plus Y(q) B(v) similar to X(r) circle plus Y(s). Namely, Phi = (p - u)(s - v) - (q + u)(r + v) is different from zero and Phi divides p + q and r + s. These sextuples are called Cantor-Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1) indicates the well-known Pelczynski`s decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder-Bernstein problem become evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let M be a compact, connected non-orientable surface without boundary and of genus g >= 3. We investigate the pure braid groups P,(M) of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 -> P(m)(M \ {x(1), ..., x(n)}) hooked right arrow P(n+m)(M) (P*) under right arrow P(n)(M) -> 1, where m, n >= 1, and p* is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p: F(n+m)(M) -> F(n)(M) of configuration spaces, defined by p((x(1), ..., x(n), x(n+1), ..., x(n+m))) = (x(1), ..., x(n)). We show that p and p* admit a section if and only if n = 1. Together with previous results, this completes the resolution of the splitting problem for surface pure braid groups. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a sequel of the work done on (strongly) monotonically monolithic spaces and their generalizations. We introduce the notion of monotonically kappa-monolithic space for any infinite cardinal kappa and present the relevant results. We show, among other things, that any sigma-product of monotonically kappa-monolithic spaces is monotonically kappa-monolithic for any infinite cardinal kappa; besides, it is consistent that any strongly monotonically omega-monolithic space with caliber omega(1) is second countable. We also study (strong) monotone kappa-monolithicity in linearly ordered spaces and subspaces of ordinals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a compact Hausdorff space, Y be a connected topological manifold, f : X -> Y be a map between closed manifolds and a is an element of Y. The vanishing of the Nielsen root number N(f; a) implies that f is homotopic to a root free map h, i.e., h similar to f and h(-1) (a) = empty set. In this paper, we prove an equivariant analog of this result for G-maps between G-spaces where G is a finite group. (C) 2010 Elsevier B.V. All rights reserved.