210 resultados para Finite-dimensional spaces
Resumo:
OBJECTIVE: To study the microanatomy of the brainstem related to the different safe entry zones used to approach intrinsic brainstem lesions. METHODS: Ten formalin-fixed and frozen brainstem specimens (20 sides) were analyzed. The white fiber dissection technique was used to study the intrinsic microsurgical anatomy as related to safe entry zones on the brainstem surface. Three anatomic landmarks on the anterolateral brainstem surface were selected: lateral mesencephalic sulcus, peritrigeminal area, and olivary body. Ten other specimens were used to study the axial sections of the inferior olivary nucleus. The clinical application of these anatomic nuances is presented. RESULTS: The lateral mesencephalic sulcus has a length of 7.4 to 13.3 mm (mean, 9.6 mm) and can be dissected safely in depths up to 4.9 to 11.7 mm (mean, 8.02 mm). In the peritrigeminal area, the distance of the fifth cranial nerve to the pyramidal tract is 3.1 to 5.7 mm (mean, 4.64 mm). The dissection may be performed 9.5 to 13.1 mm (mean, 11.2 mm) deeper, to the nucleus of the fifth cranial nerve. The inferior olivary nucleus provides safe access to lesions located up to 4.7 to 6.9 mm (mean, 5.52 mm) in the anterolateral aspect of the medulla. Clinical results confirm that these entry zones constitute surgical routes through which the brainstem may be safely approached. CONCLUSION: The white fiber dissection technique is a valuable tool for understanding the three-dimensional disposition of the anatomic structures. The lateral mesencephalic sulcus, the peritrigeminal area, and the inferior olivary nucleus provide surgical spaces and delineate the relatively safe alleys where the brainstem can be approached without injuring important neural structures.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Objective To evaluate the reliability of two- and three-dimensional ultrasonographic measurement of the thickness of the lower uterine segment (LUS) in pregnant women by transvaginal and transabdominal approaches. Methods This was a study of 30 pregnant women who bad bad at least one previous Cesarean section and were between 36 and 39 weeks` gestation, with singleton pregnancies in cephalic presentation. Sonographic examinations were performed by two observers using both 4-7-MHz transabdominal and 5-8-MHz transvaginal volumetric probes. LUS measurements were performed using two- and three-dimensional ultrasound, evaluating the entire LUS thickness transabdominally and the LUS muscular thickness transvaginally. Each observer measured the LUS four times by each method. Reliability was analyzed by comparing the mean of the absolute differences, the intraclass correlation coefficients, the 95% limits of agreement and the proportion of differences <1 mm. Results Transvaginal ultrasound provided greater reliability in LUS measurements than did transabdominal ultrasound. The use of three-dimensional ultrasound improved significantly the reliability of the LUS muscular thickness measurement obtained transvaginally. Conclusions Ultrasonographic measurement of the LUS muscular thickness transvaginally appears more reliable than does that of the entire LUS thickness transabdominally. The use of three-dimensional ultrasound should be considered to improve measurement reliability. Copyright (c) 2009 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
In the present paper were analysed the three-dimensional characteristics of the interface epithelium-connective tissue surface of finger prints of Cebus apella monkey employing the scanning electron microscopic methods. The connective tissue core (CTC) and epithelial papillae were examined verifying the three-dimensional configuration of the tissue projections. The samples were fixed in Bouin solsution for histologic preparations and in modified Karnovsky for examine to observe in scanning electron microscopy. After treatment in the 10% NaOH solution during 3 to 5 days, the surface of finger prints revealed a distribution of CTC of lamina propria in situ showing original three-dimensional SEM images. The linear and circular dispositions CTC, and the furrows were clearly identified. Each pointed papilla presented a large base and longitudinal disposition of thick collagen fiber bundles and in some areas with a complex reticular formations. The longitudinal furrows between the pointed papillae exhibited a dense layer of connective tissue and showed only low CTC or laminar in shape. The presence of numerous foramina of sweat gland were noted in three-dimensional SEM images.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Purpose: The aim of this research was to assess the dimensional accuracy of orbital prostheses based on reversed images generated by computer-aided design/computer-assisted manufacturing (CAD/CAM) using computed tomography (CT) scans. Materials and Methods: CT scans of the faces of 15 adults, men and women older than 25 years of age not bearing any congenital or acquired craniofacial defects, were processed using CAD software to produce 30 reversed three-dimensional models of the orbital region. These models were then processed using the CAM system by means of selective laser sintering to generate surface prototypes of the volunteers` orbital regions. Two moulage impressions of the faces of each volunteer were taken to manufacture 15 pairs of casts. Orbital defects were created on the right or left side of each cast. The surface prototypes were adapted to the casts and then flasked to fabricate silicone prostheses. The establishment of anthropometric landmarks on the orbital region and facial midline allowed for the data collection of 31 linear measurements, used to assess the dimensional accuracy of the orbital prostheses and their location on the face. Results: The comparative analyses of the linear measurements taken from the orbital prostheses and the opposite sides that originated the surface prototypes demonstrated that the orbital prostheses presented similar vertical, transversal, and oblique dimensions, as well as similar depth. There was no transverse or oblique displacement of the prostheses. Conclusion: From a clinical perspective, the small differences observed after analyzing all 31 linear measurements did not indicate facial asymmetry. The dimensional accuracy of the orbital prostheses suggested that the CAD/CAM system assessed herein may be applicable for clinical purposes. Int J Prosthodont 2010;23:271-276.
Resumo:
Objective. The purpose of this research was to provide further evidence to demonstrate the precision and accuracy of maxillofacial linear and angular measurements obtained by cone-beam computed tomography (CBCT) images. Study design. The study population consisted of 15 dry human skulls that were submitted to CBCT, and 3-dimensional (3D) images were generated. Linear and angular measurements based on conventional craniometric anatomical landmarks, and were identified in 3D-CBCT images by 2 radiologists twice each independently. Subsequently, physical measurements were made by a third examiner using a digital caliper and a digital goniometer. Results. The results demonstrated no statistically significant difference between inter-and intra-examiner analysis. Regarding accuracy test, no statistically significant differences were found of the comparison between the physical and CBCT-based linear and angular measurements for both examiners (P = .968 and .915, P = .844 and .700, respectively). Conclusions. 3D-CBCT images can be used to obtain dimensionally accurate linear and angular measurements from bony maxillofacial structures and landmarks. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 430-436)
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.
Resumo:
Introduction: Mini-implants are placed in restricted sites, requiring an accurate surgical technique. However, no systematic study has quantified technique accuracy to reliably predict the surgical risks. Therefore, a graduated 3-dimensional radiographic-surgical guide (G-RSG) was proposed, and its inaccuracy and risk index (RI) were estimated. Methods: The sample consisted of 6 subjects (4 male, 2 female), who used mini-implant anchorage. Ten drill-free screws (DFS) were placed by using the G-RSG. The central point of the mesiodistal septum width (SW) was the selected implant site on the presurgical radiograph. The distances between DFS and the adjacent teeth (5-DFS and 6-DFS) were measured to evaluate screw centralization and inaccuracy degree (ID). These distances were statistically compared by independent t tests, and inaccuracy was determined by the expression ID = (5-DFS-6-DFS)/2, which represents deviation of the mini-implant`s final position regarding the central point initially selected. Then SW, ID, and screw diameter (SO) were combined to estimate the surgical risk with RI expressed by RI = SO/SW-ID. Results: The 5-DFS and 6-DFS distances were not significantly different. The ID of the G-RSG was 0.17 mm. The low ID ensured a safe RI (<1) in spite of the restricted SW. Conclusions: The G-RSG accuracy allowed fine prediction of the final DFS position in the inter-radicular septum, with a low RI, which is a helpful tool to estimate surgical risks. (Am J Orthod Dentofacial Orthop 2009; 136: 722-35)
Resumo:
Objective. This study evaluated the reliability of tooth-crown radiographic references to aid in orthodontic mini-implant insertion and showed an insertion technique based on these references. Study design. The sample consisted of 213 interradicular septa evaluated in 53 bitewing radiographs. The proximal contour of adjacent tooth crowns was used to define septum width and its midpoint was linked to the interdental contact point to determine septum midline (SML). The distances from SML to mesial and distal teeth were measured and compared to evaluate SML centralization degree in 2 different septum heights. Results. The mesial and distal distances were not statistically different in the midpoint of the septum height, but they were different at the apical septum height. Conclusions. The tooth-crown radiographic references determine a high centralization degree of the SML on which an insertion site could be defined. The greater SML centralization degree was observed at the coronal septum area. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e8-e16)
Resumo:
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant-supported prosthesis were analyzed by 3-D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant-supported prosthesis system affect the way stresses are distributed.
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
Resumo:
Purpose: The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. Materials and Methods: One hundred specimens were made using a Teflon matrix (1.5cmx0.5mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA-Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p = 0.05). Results: Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. Conclusions: All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.