241 resultados para Triplicated alpha-globin genes
Resumo:
Context: Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare recessive disease characterized by near absence of adipose tissue, resulting in severe dyslipidemia and insulin resistance. In most reported cases, BSCL is due to alterations in either seipin, of unknown function, or 1-acylglycerol-3- phosphate acyltransferase-beta (AGPAT2), which catalyzes the formation of phosphatidic acid. Objective: We sought to determine the genetic origin of the unexplained cases of BSCL. We thus sequenced CAV1, encoding caveolin-1, as a candidate gene involved in insulin signaling and lipid homeostasis. CAV1 is a key structural component of plasma membrane caveolae, and Cav1-deficient mice display progressive loss of adipose tissue and insulin resistance. Design: We undertook phenotyping studies and molecular screening of CAV1 in four patients with BSCL with no mutation in the genes encoding either seipin or AGPAT2. Results: A homozygous nonsense mutation (p.Glu38X) was identified in CAV1 in a patient with BSCL born from a consanguineous union. This mutation affects both the alpha-and beta-CAV1 isoforms and ablates CAV1 expression in skin fibroblasts. Detailed magnetic resonance imaging of the proband confirmed near total absence of both sc and visceral adipose tissue, with only vestigial amounts in the dorsal sc regions. In keeping with the lack of adipose tissue, the proband was also severely insulin resistant and dyslipidemic. In addition, the proband had mild hypocalcemia likely due to vitamin D resistance. Conclusions: These findings identify CAV1 as a new BSCL-related gene and support a critical role for caveolins in human adipocyte function.
Resumo:
Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3`UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3`UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.
Resumo:
In highly eusocial insects, such as the honey bee, Apis mellifera, the reproductive bias has become embedded in morphological caste differences. These are most expressively denoted in ovary size, with adult queens having large ovaries consisting of 150-200 ovarioles each, while workers typically have only 1-20 ovarioles per ovary. This morphological differentiation is a result of hormonal signals triggered by the diet change in the third larval instar, which eventually generate caste-specific gene expression patterns. To reveal these we produced differential gene expression libraries by Representational Difference Analysis (RDA) for queen and worker ovaries in a developmental stage when cell death is a prominent feature in the ovarioles of workers, whereas all ovarioles are maintained and extend in length in queens. In the queen library, 48% of the gene set represented homologs of known Drosophila genes, whereas in the worker ovary, the largest set (59%) were ESTs evidencing novel genes, not even computationally predicted in the honey bee genome. Differential expression was confirmed by quantitative RT-PCR for a selected gene set, denoting major differences for two queen and two worker library genes. These included two unpredicted genes located in chromosome 11 (Group11.35 and Group11.31, respectively) possibly representing long non-coding RNAs. Being candidates as modulators of ovary development, their expression and functional analysis should be a focal point for future studies. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
Debaryomyces hansenii cells cultivated on galactose produced extracellular and intracellular alpha-galactosidases, which showed 54.5 and 54.8 kDa molecular mass (MALDI-TOF), 60 and 61 kDa (SDS-PAGE) and 5.15 and 4.15 pI values, respectively. The extracellular and intracellular deglycosylated forms presented 36 and 40 kDa molecular mass, with 40 and 34% carbohydrate content, respectively. The N-terminal sequences of the alpha-galactosidases were identical. Intracellular alpha-galactosidase showed smaller thermostability when compared to the extracellular enzyme. D. hansenii UFV-1 extracellular alpha-galactosidase presented higher k(cat) than the intracellular enzyme (7.16 vs 3.29 s(-1), respectively) for the p-nitrophenyl-alpha-D-galactopyranoside substrate. The K(m) for hydrolysis of pNP alpha Gal, melibiose, stachyose, and raffinose were 0.32, 2.12, 10.8, and 32.8 mM, respectively. The intracellular enzyme was acompetitively inhibited by galactose (K(i) = 0.70 mM), and it was inactivated by Cu(II) and Ag(I). Enzyme incubation with soy milk for 6 h at 55 degrees C reduced stachyose and raffinose amounts by 100 and 73%, respectively.
Resumo:
The macro phage-derived neutrophil chemotactic factor (MNCF) is an alpha-galactoside-binding lectin, known to induce dexamethasone-insensitive neutrophil recruitment. We further characterized MNCF effects on neutrophils and showed that it shares with TNF-alpha the ability to delay apoptosis and to trigger degranulation. MNCF and TNF-alpha effects show similar kinetics and involve Src kinases and MAPKinases dependent pathways. They were, however, clearly distinguished, since the soluble TNF-receptor etanercept prevented TNF but not MNCF effects, while melibiose disaccharide inhibited MNCF but not TNF effects. Absorption of MNCF on detoxi-gel did not alter its properties, precluding an LPS contamination effect. By contrast, galectin-3 required LPS to activate neutrophils. Specific antibodies allowed to further demonstrate that MNCF and galectin-3 are two distinct molecules. Finally, MNCF- and IL-8-induced neutrophil activation differed by their kinetic and sensitivity to pertussis toxin. In conclusion, MNCF is a distinct neutrophil agonist, with pro-inflammatory activities involving its carbohydrate recognition domain. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
Background: A growing body of evidence has revealed, the involvement of epigenetic alterations in the etiology of astrocytomas. In the present study, we aimed to evaluate the association of DNA methylation of histone deacetylase genes (HDAC) with the etiology of astrocytoma, and the implications for epigenetic therapy. Materials and Methods: Methylation of the HDAC4, HDAC5 and HDAC6 genes was assessed in 29 tumor samples (astrocytomas grades I, III, and IV) and in the glioblastoma cell lines U87, U251, U343, SF188, and T98G by methylation-specific quantitative PCR (MSED-qPCR). Results: Significantly increased methylation of the HDAC5 gene was observed in astrocytomas when compared to non-neoplastic brain samples (p=0.0007) and to glioblastomas cell lines (p=0.001). A heterogenic methylation pattern was evidenced when compared to the glioblastoma cell lines. Distinct effects on methylation and gene expression were observed after in vitro treatment of the different cell lines with decitabine. Conclusion: Our results suggest that abnormal methylation of HDAC genes is involved in the etiology of astrocytomas and indicate that loci-specific epigenetic interindividualities might be associated to the differential responses to treatment with decitabine.
Resumo:
We analyzed the effect of (+)alpha-tocopheryl succinate (alpha-TOS) alone or associated with arsenic trioxide (ATO) or all-trans retinoid acid (ATRA) in acute promyelocytic leukemia (APL). alpha-TOS-induced apoptosis in APL clinical samples and in ATRA-sensitive (NB4) and ATRA-resistant (NB4-R2) APL cell lines. The effective dose 50% (ED-50) was calculated to be 71 and 58 mu M, for NB4 and NB4-R2, respectively. a-TOS neither induced nor modified ATRA-induced differentiation of APL cells, and did not affect the proliferation and differentiation of normal CD34(+) hematopoietic progenitors in methylcellulose assays. alpha-TOS exerted a moderate antagonistic effect to ATO-induced apoptosis when treatment was done simultaneously but when alpha-TOS was added 24 h after ATO, an additive effect was observed. Our results support the concept of alpha-TOS as an anti-leukemic compound which spares normal hematopoiesis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Human T-lymphotropic virus 1 (HTLV-1) is associated with the T-cell malignancy known as adult T-cell leukemia! lymphoma (ATLL) and with a disorder called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, the treatment of these diseases is based on symptom relief. RNA interference (RNAi) technology has been described as an efficient mechanism for development of new therapeutic methods. Thus, the aim of this study was to evaluate the inhibition of HTLV-1 structural proteins using short hairpin RNAs (shRNAs) expressed by non-viral vectors. Materials and Methods: Reporter plasmids that express enhanced green fluorescent protein-Gag (EGFP-Gag) and EGFP-Env fusion proteins and vectors that express shRNAs corresponding to the HTLV-1 gag and env genes were constructed. shRNA vectors and reporter plasmids were simultaneously transfected into HEK 293 cells. Results: Fluorescence microscopy, flow cytometry and real-time PCR showed that shRNAs were effective in inhibiting the fusion proteins. Conclusion: These shRNAs are effective against the expression of structural genes and may provide an approach to the development of new therapeutic agents.
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Resumo:
Infection by Helicobacter pylori is associated with the development of several gastroduodenal diseases, including gastritis, peptic ulcer disease (gastric ulcers and duodenal ulcers), and gastric adenocarcinoma. Although a number of putative virulence factors have been reported for H. pylori, there are conflicting results regarding their association with specific H. pylori-related diseases. In this work, we investigated the presence of virB11 and cagT, located in the left half of the cag pathogenicity island (cagPAI), and the jhp917-jhp918 sequences, components of the dupA gene located in the plasticity zone of H. pylori, in Brazilian isolates of H. pylori. We also examined the association between these genes and H. pylori-related gastritis, peptic ulcer disease, and gastric and duodenal ulcers in an attempt to identify a gene marker for clinical outcomes related to infection by H. pylori. The cagT gene was associated with peptic ulcer disease and gastric ulcers, whereas the virB11 gene was detected in nearly all of the samples. The dupA gene was not associated with duodenal ulcers or any gastroduodenal disease here analyzed. These results suggest that cagT could be a useful prognostic marker for the development of peptic ulcer disease in the state of Sao Paulo, Brazil. They also indicate that cagT is associated with greater virulence and peptic ulceration, and that this gene is an essential component of the type IV secretion system of H. pylori.
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
Objective and study design: A case-control study was conducted on 42 Brazilian women presenting with human papilloma virus (HPV) infection and cervical lesion and 87 HPV-negative women to evaluate single nucleotide polymorphisms observed in TNF-alpha, TGF-beta, IL-10, IL-6, and IFN-gamma genes. Results and conclusion: No significant association was observed on the cytokine polymorphisms analyzed in this series. Larger studies using cytokine polymorphisms may be useful for providing further information regarding their influence or not in HPV-related cervical lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of L-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of beta-oxidation. J. Nutr. 141: 1799-1804, 2011.