54 resultados para asymptotic suboptimality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weakly nonlinear interactions among equatorial waves have been explored in this paper using the adiabatic version of the equatorial beta-plane primitive equations in isobaric coordinates. Assuming rigid lid vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact resonantly in a triad configuration at the O(epsilon) approximation. The resonant triads whose wave components satisfy a resonance condition for their vertical structures were found to have the most significant interactions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the highest absolute frequency always acts as an energy source (or sink) for the remaining triad components, as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that, for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the interaction period being dependent upon the initial mode amplitudes. Potential future applications of the present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic background state are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of galaxies as star forming or active is generally done in the ([O III]/H beta, [N II]/H alpha) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a seagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these `retired` galaxies would be produced by hot post-asymptotic giant branch stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is, however, uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagull`s right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colour-magnitude diagrams (CMDs) of the Small Magellanic Cloud (SMC) star cluster NGC 419, derived from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) data, reveal a well-delineated secondary clump located below the classical compact red clump typical of intermediate-age populations. We demonstrate that this feature belongs to the cluster itself, rather than to the underlying SMC field. Then, we use synthetic CMDs to show that it corresponds very well to the secondary clump predicted to appear as a result of He-ignition in stars just massive enough to avoid e(-)-degeneracy settling in their H-exhausted cores. The main red clump instead is made of the slightly less massive stars which passed through e(-) degeneracy and ignited He at the tip of the red giant branch. In other words, NGC 419 is the rare snapshot of a cluster while undergoing the fast transition from classical to degenerate H-exhausted cores. At this particular moment of a cluster`s life, the colour distance between the main-sequence turn-off and the red clump(s) depends sensitively on the amount of convective core overshooting, Lambda(c). By coupling measurements of this colour separation with fits to the red clump morphology, we are able to estimate simultaneously the cluster mean age (1.35(-0.04)(+0.11) Gyr) and overshooting efficiency (Lambda(c) = 0.47(-0.04)(+0.14)). Therefore, clusters like NGC 419 may constitute important marks in the age scale of intermediate-age populations. After eye inspection of other CMDs derived from HST/ACS data, we suggest that the same secondary clump may also be present in the Large Magellanic Cloud clusters NGC 1751, 1783, 1806, 1846, 1852 and 1917.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a dissipative damped wave equation with nonautonomous damping of the form u(tt) + beta(t)u(t) - Delta u + f(u) (1) in a bounded smooth domain Omega subset of R(n) with Dirichlet boundary conditions, where f is a dissipative smooth nonlinearity and the damping beta : R -> (0, infinity) is a suitable function. We prove, if (1) has finitely many equilibria, that all global bounded solutions of (1) are backwards and forwards asymptotic to equilibria. Thus, we give a class of examples of nonautonomous evolution processes for which the structure of the pullback attractors is well understood. That complements the results of [Carvalho & Langa, 2009] on characterization of attractors, where it was shown that a small nonautonomous perturbation of an autonomous gradient-like evolution process is also gradient-like. Note that the evolution process associated to (1) is not a small nonautonomous perturbation of any autonomous gradient-like evolution processes. Moreover, we are also able to prove that the pullback attractor for (1) is also a forwards attractor and that the rate of attraction is exponential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the geometry of 3-manifolds generically embedded in R(n) by means of the analysis of the singularities of the distance-squared and height functions on them. We describe the local structure of the discriminant (associated to the distribution of asymptotic directions), the ridges and the flat ridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).