172 resultados para Polymerization method
Resumo:
Nickel catalysts with a load of 5 wt% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4, 8 and 14 mol% CaO, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and impedance spectroscopy (IS) and tested in the carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of CaO-ZrO(2) solid solutions. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the support composition. The electrical properties of the support have a proportional effect on the catalytic activities. Catalytic tests were done at 800 degrees C for 6 h and the composition of the gaseous products and the catalytic conversion depended on the CaO-ZrO(2) solid solution composition and its influence on supported NiO species. A direct relation was found between the variation in the electrical conductivity of the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Catalysts containing NiO/MgO/ZrO(2) mixtures were synthesized by the polymerization method in a single step. They were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR) and physisorption of N(2) (BET) and then tested in the reforming of a model biogas (1.5CH4:1CO(2)) in the presence of air (1.5CH(4) + 1CO(2) + 0.25O(2)) at 750 degrees C for 6h. It was observed that the catalyst Ni20MZ performed better in catalytic processes than the well known catalysts, Ni/ZrO(2) and Ni/MgO, synthesized under the same conditions. The formation of solid solutions, MgO-ZrO(2) and NiO-MgO, increased the rate of conversion of reactants (CH(4) and CO(2)) into synthesis gas (H(2) + CO). The formation of oxygen vacancies (in samples containing ZrO(2) and MgO) seems to promote removal of the coke deposited on the nickel surface. The values of the H(2)/CO ratio were generally found to be slightly lower than stoichiometric, owing to the reverse water gas shift reaction occurring in parallel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Supported nickel catalysts of composition Ni/Y(2)O(3)-ZrO(2) were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y(2)O(3)-ZrO(2) in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO(2) conversion of 61% on the 5NiYZ catalyst at 800 degrees C, representing a better response than for the catalyst of the same composition prepared by wet impregnation. (C) 2009 Published by Elsevier B.V.
Resumo:
Immunohistochemistry of undecalcified bone sections embedded in methyl methacrylate (MMA) is not commonly employed because of potential destruction of tissue antigenicity by highly exothermic polymerization. The aim of the present study was to describe a new technique in which a quick decalcification of bone sections embedded in MMA improves the results for immunohistochemistry. The quality of interleukin 1 alpha (IL-1 alpha) immunostaining according to the present method was better than the conventional one. Immunostaining for osteoprotegerin (OPG) and the receptor activator of NF-kappa B ligand (RANKL) in bone sections of chronic kidney disease patients with mineral bone disorders (CKD-MBD) was stronger than in controls (postmortem healthy subjects). The present study suggested that this method is easy, fast, and effective to perform both histomorphometry and immunohistochemistry in the same bone fragment, yielding new insights into pathophysiological aspects and therapeutic approaches in bone disease.
Resumo:
Objective. Stress development at the tooth/restoration interface is one of the most important reasons for failure of adhesive restorations. The aim of this study was to evaluate the influence of BisGMA/TEGDMA (B/T) and UDMA/TEGDMA (U/T) ratios on polymerization stress (PS) and on the variables related to its development: degree of conversion (DC), polymerization maximum rate (Rp(max)), volumetric shrinkage (VS), elastic modulus (E), stress relaxation (SR) and viscosity of experimental composites. Method. Composites were formulated containing B/T or U/T in mol% ratios of 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3 and 8: 2, and 15 wt% of fumed silica. PS was determined with a universal testing machine. VS was measured with a linometer. E and SR were obtained in three-point bending. DC and Rp(max) were determined by real time NIR spectroscopy and viscosity was measured in viscometer. Data were submitted to one-way ANOVA, Tukey test (alpha = 0.05%) and regression analyses. Results. PS, VS, E and DC decreased and viscosity and Rp(max) increased with base monomer content in both series. PS showed strong correlation with VS, DC and viscosity. PS, VS and DC were higher and viscosity was lower for UDMA-based materials. Significance. Reduced viscosity, kinetics parameters and molecular characteristics led UDMA-based composites to elevated conversion and relatively lower PS at lower TEGDMA contents, compared to B/T composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The purpose of this study was to evaluate how curing protocol affects the extent of polymerization of dual-cured resin cements. Methods. Four commercial resin cements were used (DuoLink, Panavia F 2.0, Variolink II and Enforce). The extent of polymerization of the resin cements cured under different conditions was measured using a (1)H Stray-Field MRI method, which also enabled to probe molecular mobility in the kHz frequency range. Results. Resin cements show well distinct behaviours concerning chemical cure. Immediate photo-activation appears to be the best choice for higher filler loaded resin cements (Panavia F 2.0 and Variolink). A photo-activation delay (5 min) did not induce any significant difference in the extent of polymerization of all cements. Significance. The extent of polymerization of dual-cured resin cements considerably changed among products under various curing protocols. Clinicians should optimize the materials choice taking into account the curing characteristics of the cements. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Despite the advances in bonding materials, many clinicians today still prefer to place bands on molar teeth. Molar bonding procedures need improvement to be widely accepted clinically. OBJECTIVE: The purpose of this study was to evaluate the shear bond strength when an additional adhesive layer was applied on the occlusal tooth/tube interface to provide reinforcement to molar tubes. MATERIAL AND METHODS: Sixty third molars were selected and allocated to the 3 groups: group 1 received a conventional direct bond followed by the application of an additional layer of adhesive on the occlusal tooth/tube interface, group 2 received a conventional direct bond, and group 3 received a conventional direct bond and an additional cure time of 10 s. The specimens were debonded in a universal testing machine. The results were analyzed statistically by ANOVA and Tukey's test (α=0.05). RESULTS: Group 1 had a significantly higher (p<0.05) shear bond strength compared to groups 2 and 3. No difference was detected between groups 2 and 3 (p>0.05). CONCLUSIONS: The present in vitro findings indicate that the application of an additional layer of adhesive on the tooth/tube interface increased the shear bond strength of the bonded molar tubes.
Resumo:
The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Resumo:
This article describes and discusses a method to determine root curvature radius by using cone-beam computed tomography (CBCT). The severity of root canal curvature is essential to select instrument and instrumentation technique. The diagnosis and planning of root canal treatment have traditionally been made based on periapical radiography. However, the higher accuracy of CBCT images to identify anatomic and pathologic alterations compared to panoramic and periapical radiographs has been shown to reduce the incidence of false-negative results. In high-resolution images, the measurement of root curvature radius can be obtained by circumcenter. Based on 3 mathematical points determined with the working tools of Planimp® software, it is possible to calculate root curvature radius in both apical and coronal directions. The CBCT-aided method for determination of root curvature radius presented in this article is easy to perform, reproducible and allows a more reliable and predictable endodontic planning, which reflects directly on a more efficacious preparation of curved root canals.
Resumo:
OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05). RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.
Resumo:
The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 - conventional spatula; G5 - commercial syringe (Centrix) and G6 - low-cost syringe. Ten specimens of each group were prepared and the Knoop hardness was determined 5 times on each specimen with a HM-124 hardness machine (25 g/30 s dwell time) after 24 h, 1 and 2 weeks. During the entire test period, the specimens were stored in liquid paraffin at 37ºC. Significant differences were found between G3 and G1/G2 (two-way ANOVA and Tukey's post hoc test; p<0.01). There was no significant difference in the results among the multiple ways of insertion. The glass ionomer cement Magic Glass ART showed the lowest hardness, while the insertion technique had no significant influence on hardness.