Influence of different light sources and photo-activation methods on degree of conversion and polymerization shrinkage of a nanocomposite resin
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage. CAPES/Brazil Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Sao Paulo State University, UNESP, Araraquara School of Dentistry, Brazil |
Identificador |
LASER PHYSICS, v.19, n.12, p.2210-2218, 2009 1054-660X http://producao.usp.br/handle/BDPI/29651 10.1134/S1054660X09230066 |
Idioma(s) |
eng |
Publicador |
MAIK NAUKA/INTERPERIODICA/SPRINGER |
Relação |
Laser Physics |
Direitos |
restrictedAccess Copyright MAIK NAUKA/INTERPERIODICA/SPRINGER |
Palavras-Chave | #CURED COMPOSITE RESINS #EMITTING DIODES LEDS #C-FACTOR LEVELS #ER-YAG LASERS #DENTAL COMPOSITES #CONTRACTION STRESS #CURING UNITS #MECHANICAL-PROPERTIES #BOND STRENGTH #TEMPERATURE INCREASE #Optics #Physics, Applied |
Tipo |
article original article publishedVersion |