115 resultados para Oscillatory Marangoni-Convection
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.
Resumo:
A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Chemical admixtures increase the theological complexity of cement pastes owing to their chemical and physical interactions with particles, which affects cement hydration and agglomeration kinetics. Using oscillatory rheometry and isothermal calorimetry, this article shows that the cellulose ether HMEC (hydroxymethyl ethylcellulose), widely used as a viscosity modifying agent in self-compacting concretes and dry-set mortars, displayed a steric dispersant barrier effect during the first 2 h of hydration associated to a cement retarding nature, consequently reducing the setting speed. However, despite this stabilization effect, the polymer increased the cohesion strength when comparing cement particles with the same hydration degree. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Aqueous two-phase micellar systems (ATPMS) are micellar surfactant solutions with physical properties that make them very efficient for the extraction/concentration of biological products. In this work the main proposal that has been discussed is the possible applicability and importance of a novel oscillatory flow micro-reactor (micro-OFR) envisaged for parallel screening and/or development of industrial bioprocesses in ATPMS. Based on the technology of oscillatory flow mixing (OFM), this batch or continuous micro-reactor has been presented as a new small-scale alternative for biological or physical-chemical applications. RESULTS: ATPMS experiments were carried out in different OFM conditions (times, temperatures, oscillation frequencies and amplitudes) for the extraction of glucose-6-phosphate dehydrogenase (G6PD) in Triton X-114/buffer with Cibacron Blue as affinity ligand. CONCLUSION: The results suggest the potential use of OFR, considering this process a promising and new alternative for the purification or pre-concentration of bioproducts. Despite the applied homogenization and extraction conditions have presented no improvements in the partitioning selectivity of the target enzyme, when at rest temperature they have influenced the partitioning behavior in Triton X-114 ATPMS. (C) 2011 Society of Chemical Industry
Resumo:
This paper demonstrates the oscillatory characteristics of electrical signals acquired from two ornamental plant types (Epipremnum pinnatum and Philodendron scandens - Family Araceae), using a noninvasive acquisition system. The electrical signal was recorded using Ag/AgCl superficial electrodes inside a Faraday cage. The presence of the oscillatory electric generator was shown using a classical power spectral density. The Lempel and Ziv complexity measurement showed that the plant signal was not noise despite its nonlinear behavior. The oscillatory characteristics of the signal were explained using a simulated electrical model that establishes that for a frequency range from 5 to 15 Hz, the oscillatory characteristic is higher than for other frequency ranges. All results show that non-invasive electrical plant signals can be acquired with improvement of signal-to-noise ratio using a Faraday cage, and a simple electrical model is able to explain the electrical signal being generated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 degrees C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 degrees C and at T) < I is found in most cases, except that temperature compensation with q(10) approximate to I predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than, from a weak temperature dependence of the individual steps.
Resumo:
Spatiotemporal pattern formation in the electrocatalytic oxidation of sulfide on a platinum disk is investigated using electrochemical methods and a charge-coupled device (CCD) camera simultaneously. The system is characterized by different oscillatory regions spread over a wide potential range. An additional series resistor and a large electrode area facilitate observation of multiple regions of kinetic instabilities along the current/potential curve. Spatiotemporal patterns on the working electrode, such as fronts, pulses, spirals, twinkling eyes, labyrinthine stripes, and alternating synchronized deposition and dissolution, are observed at different operating conditions of series resistance and sweep rate.