17 resultados para HEp-2 cell classification
Resumo:
Fluorochrome-labelled cells of two field isolates and Mycoplasma synoviae (Ms) were inoculated onto monolayer cultures of fluorochrome-labelled HEp-2 cells and monitored by confocal laser scanning microscopy (CLSM). Ms was detected initially adhered to and subsequently inside the host cells. Between 24 and 48 h of infection, Ms was detected in the perinuclear region, and after 72 h of infection was confirmed by gentamicin invasion assay. High and low passage Ms strains showed no differences in adherence or invasion. The morphology and the actin filaments of the infected HEp-2 cells were preserved throughout the study period. The observed invasion by Ms is consistent with the biology of Mollicutes, and could explain the difficulties in recovering field isolates of the mycoplasma and in controlling the infection in birds even after long-term antibiotic treatment. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: Early weaning (EW) increases proliferation of the gastric epithelium in parallel with higher expression of transforming growth factor alpha and its receptor epidermal growth factor receptor (EGFR). The primary objective of the present study was to examine involvement of EGFR signalling in regulating mucosal cell proliferation during the early weaning period. Materials and methods: Fifteen-day-old rats were split into two groups: suckling (control) and EW, in which pups were separated from the dam. Animals were killed daily until the 18th day, 3 days after onset of treatment. To investigate the role of EGFR in proliferation control, EW pups were injected with AG1478, an EGFR inhibitor; signalling molecules, proliferative indices and cell cycle-related proteins were evaluated. Results: EW increased ERK1/2 and Src phosphorylation at 17 days, but p-Akt levels were unchanged. Moreover, at 17 days, AG1478 administration impaired ERK phosphorylation, whereas p-Src and p-Akt were not altered. AG1478 treatment reduced mitotic and DNA synthesis indices, which were determined on HE-stained and BrdU-labelled sections. Finally, AG1478 injection decreased p21 levels in the gastric mucosa at 17 days, while no changes were detected in p27, cyclin E, CDK2, cyclin D1 and CDK4 concentrations. Conclusions: EGFR is part of the mechanism that regulates cell proliferation in rat gastric mucosa during early weaning. We suggest that such responses might depend on activation of MAPK and/or Src signalling pathways and regulation of p21 levels.
Resumo:
We present experimental evidence of the existence of cell variability in terms of threshold light dose for Hep G2 (liver cancer cells) cultured. Using a theoretical model to describe the effects caused by successive photodynamic therapy (PDT) sessions, and based on the consequences of a partial response we introduce the threshold dose distribution concept within a tumor. The experimental model consists in a stack of flasks, and simulates subsequent layers of a tissue exposed to PDT application. The result indicates that cells from the same culture could respond in different ways to similar PDT induced-damages. Moreover, the consequence is a partial killing of the cells submitted to PDT, and the death fraction decreased at each in vitro PDT session. To demonstrate the occurrence of cell population modification as a response to PDT, we constructed a simple theoretical model and assumed that the threshold dose distribution for a cell population of a tumor is represented by a modified Gaussian distribution.
Resumo:
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.
Resumo:
In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations Of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concert I rations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Members of the genera Bacteroides and Parabacteroides are important constituents of both human and animal intestinal microbiota, and are significant facultative pathogens. In this study, the ability of Bacteroides spp. and Parabacteroides distasonis isolated from both diarrhoeal and normal stools (n = 114) to adhere to and invade HEp-2 cells was evaluated. The presence of putative virulence factors such as capsule and fimbriae was also investigated. Adherence to HEp-2 cells was observed in 75.4% of the strains, which displayed non-localized clusters. Invasion was observed in 37.5% and 26% of the strains isolated from diarrhoeal and non-diarrhoeal stools, respectively. All strains displayed a capsule, whereas none of them showed fimbriae-like structures. This is the first report of the ability of Bacteroides spp. and P. distasonis to adhere to and invade cultured HEp-2 epithelial cells.
Resumo:
Feces of 70 diarrhoeic and 230 non-diarrhoeic domestic cats from Sao Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non-diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae-theta (three strains), eae-kappa (n = 3), eae-alpha 1 (n = 2), eae-iota (n = 2), one eae-alpha 2, eae-beta 1 and eae-eta each, and two were not typeable. The majority of the EPEC isolates adhered to HEp-2 cells in a localized adherence-like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.
Resumo:
In order to consider the photodynamic therapy (PDT) as a clinical treatment for candidosis, it is necessary to know its cytotoxic effect on normal cells and tissues. Therefore, this study evaluated the toxicity of PDT with PhotogemA (R) associated with red light-emitting diode (LED) on L929 and MDPC-23 cell cultures and healthy rat palatal mucosa. In the in vitro experiment, the cells (30000 cells/cm(2)) were seeded in 24-well plates for 48 h, incubated with PhotogemA (R) (50, 100, or 150 mg/l) and either irradiated or not with a red LED source (630 +/- 3 nm; 75 or 100 J/cm(2); 22 mW/cm(2)). Cell metabolism was evaluated by the MTT assay (ANOVA and Dunnet`s post hoc tests; p < 0.05) and cell morphology was examined by scanning electron microscopy. In the in vivo evaluation, PhotogemA (R) (500 mg/l) was applied to the palatal mucosa of Wistar rats during 30 min and exposed to red LED (630 nm) during 20 min (306 J/cm(2)). The palatal mucosa was photographed for macroscopic analysis at 0, 1, 3, and 7 days posttreatment and subjected to histological analysis after sacrifice of the rats. For both cell lines, there was a statistically significant decrease of the mitochondrial activity (90-97%) for all PhotogemA (R) concentrations associated with red LED regardless of the energy density. However, in the in vivo evaluation, the PDT-treated groups presented intact mucosa with normal characteristics both macroscopically and histologically. From these results, it may be concluded that the association of PhotogemA (R) and red LED caused severe toxic effects on normal cell cultures, characterized by the reduction of mitochondrial activity and morphological alterations, but did not cause damage to the rat palatal mucosa in vivo.
Resumo:
Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)
Resumo:
The role of PPAR-gamma in ciglitazone and 15-d PGJ(2)-induced apoptosis and cell cycle arrest of Jurkat (before and after PPAR gamma gene silencing), U937 (express high levels of PPAR gamma) and HeLa (that express very low levels of PPAR gamma) cells was investigated. PPAR gamma gene silencing, per se, induced a G2/M cell arrest, loss of membrane integrity and DNA fragmentation of Jurkat cells, indicating that PPAR gamma is important for this cell survival and proliferation. Ciglitazone-induced apoptosis was abolished after knockdown of PPAR gamma suggesting a PPAR gamma-dependent pro-apoptotic effect. However, ciglitazone treatment was toxic for U937 and HeLa cells regardless of the presence of PPAR gamma. This treatment did not change the cell cycle distribution corroborating with a PPAR gamma-independent mechanism. On the other hand, 15-d PGJ(2) induced apoptosis of the three cancer cell lines regardless of the expression of PPAR gamma. These results suggest that PPAR gamma plays an important role for death of malignant T lymphocytes (Jurkat cells) and PPAR gamma agonists exert their effects through PPAR gamma-dependent and -independent mechanisms depending on the drug and the cell type. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.
Resumo:
We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.
Resumo:
The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)(4)Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found all increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 mu M at 24h, 211 mu M at 48 h to 81 mu M at 72 h. In conclusion, Ru(2)GLA is a novel drug with anti proliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Newly designed 2,1,3-benzothiadiazole-containing fluorescent probes with four excited state intramolecular proton transfer (ESIPT) sites were successfully tested in live cell-imaging assays using a confluent monolayer of human stem-cells (tissue). All tested dyes were compared with the commercially available DAPI and gave far better results. (c) 2010 Elsevier Ltd. All rights reserved.