Photodynamic therapy associating Photogem (R) and blue LED on L929 and MDPC-23 cell culture
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2007/04376-4] |
Identificador |
CELL BIOLOGY INTERNATIONAL, v.34, n.4, p.343-351, 2010 1065-6995 http://producao.usp.br/handle/BDPI/29891 10.1042/CBI20090032 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
Relação |
Cell Biology International |
Direitos |
closedAccess Copyright ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
Palavras-Chave | #cytotoxicity #fibroblast #haematoporphyrin derivative #odontoblast #photodynamic therapy #KERATINOCYTES IN-VITRO #CANDIDA-ALBICANS #CATIONIC PORPHYRIN #FIBROBLASTS #LIGHT #DEATH #PHOTOINACTIVATION #PROLIFERATION #INACTIVATION #DERIVATIVES #Cell Biology |
Tipo |
article original article publishedVersion |