16 resultados para 3D information

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment. However usually the huge amount of 3D information is difficult to manage due to the fact that the robot storage system and computing capabilities are insufficient. Therefore, a data compression method is necessary to store and process this information while preserving as much information as possible. A few methods have been proposed to compress 3D information. Nevertheless, there does not exist a consistent public benchmark for comparing the results (compression level, distance reconstructed error, etc.) obtained with different methods. In this paper, we propose a dataset composed of a set of 3D point clouds with different structure and texture variability to evaluate the results obtained from 3D data compression methods. We also provide useful tools for comparing compression methods, using as a baseline the results obtained by existing relevant compression methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to the 39th International Symposium on Robotics ISR 2008, Seoul, South Korea, October 15-17, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics provides valuable information about the robot’s environment. Traditionally, stereo cameras have been used as a low-cost 3D sensor. However, the lack of precision and texture for some surfaces suggests that the use of other 3D sensors could be more suitable. In this work, we examine the use of two sensors: an infrared SR4000 and a Kinect camera. We use a combination of 3D data obtained by these cameras, along with features obtained from 2D images acquired from these cameras, using a Growing Neural Gas (GNG) network applied to the 3D data. The goal is to obtain a robust egomotion technique. The GNG network is used to reduce the camera error. To calculate the egomotion, we test two methods for 3D registration. One is based on an iterative closest points algorithm, and the other employs random sample consensus. Finally, a simultaneous localization and mapping method is applied to the complete sequence to reduce the global error. The error from each sensor and the mapping results from the proposed method are examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the design of a real-time system to recognize and interprethand gestures. The acquisition devices are low cost 3D sensors. 3D hand pose will be segmented, characterized and track using growing neural gas (GNG) structure. The capacity of the system to obtain information with a high degree of freedom allows the encoding of many gestures and a very accurate motion capture. The use of hand pose models combined with motion information provide with GNG permits to deal with the problem of the hand motion representation. A natural interface applied to a virtual mirrorwriting system and to a system to estimate hand pose will be designed to demonstrate the validity of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock mass classification systems are widely used tools for assessing the stability of rock slopes. Their calculation requires the prior quantification of several parameters during conventional fieldwork campaigns, such as the orientation of the discontinuity sets, the main properties of the existing discontinuities and the geo-mechanical characterization of the intact rock mass, which can be time-consuming and an often risky task. Conversely, the use of relatively new remote sensing data for modelling the rock mass surface by means of 3D point clouds is changing the current investigation strategies in different rock slope engineering applications. In this paper, the main practical issues affecting the application of Slope Mass Rating (SMR) for the characterization of rock slopes from 3D point clouds are reviewed, using three case studies from an end-user point of view. To this end, the SMR adjustment factors, which were calculated from different sources of information and processes, using the different softwares, are compared with those calculated using conventional fieldwork data. In the presented analysis, special attention is paid to the differences between the SMR indexes derived from the 3D point cloud and conventional field work approaches, the main factors that determine the quality of the data and some recognized practical issues. Finally, the reliability of Slope Mass Rating for the characterization of rocky slopes is highlighted.